(1-x)/(x+5)=3x+11

Simple and best practice solution for (1-x)/(x+5)=3x+11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1-x)/(x+5)=3x+11 equation:



(1-x)/(x+5)=3x+11
We move all terms to the left:
(1-x)/(x+5)-(3x+11)=0
Domain of the equation: (x+5)!=0
We move all terms containing x to the left, all other terms to the right
x!=-5
x∈R
We add all the numbers together, and all the variables
(-1x+1)/(x+5)-(3x+11)=0
We get rid of parentheses
(-1x+1)/(x+5)-3x-11=0
We multiply all the terms by the denominator
(-1x+1)-3x*(x+5)-11*(x+5)=0
We multiply parentheses
-3x^2+(-1x+1)-15x-11x-55=0
We get rid of parentheses
-3x^2-1x-15x-11x+1-55=0
We add all the numbers together, and all the variables
-3x^2-27x-54=0
a = -3; b = -27; c = -54;
Δ = b2-4ac
Δ = -272-4·(-3)·(-54)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-9}{2*-3}=\frac{18}{-6} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+9}{2*-3}=\frac{36}{-6} =-6 $

See similar equations:

| 5x+3-2=1+6x-22 | | 50=25x+15x | | Y=128-12x | | 9m-93=45 | | x^2-1.1x-0.5=0 | | 5(s-4)=30 | | (3x-11)/(1-x)=(x+5) | | (3x-11)/(1-x)=0 | | N(n+5)=-2 | | v/6+19=27 | | 5(s–4)=30 | | 6h-24=24 | | 3x-11/1-x=0 | | 40=14w-6w | | 6h-25=17 | | 4(.5+3)=3x+12-x | | 20+7y=4y+-2(-10+y) | | 20+7c=55 | | 5=f-59/6 | | Y=128-10x | | 19+5k=64 | | 31=2s-63 | | -2/7x=12 | | 4x+3x=11x-11 | | c/3+12=16 | | 21=20+v/3 | | √3=v | | g-82/7=2 | | -10+k=-2(k-4) | | 4(1+6x)=-20 | | 223=408-z | | r+35/10=5 |

Equations solver categories