(1-x2)=-12

Simple and best practice solution for (1-x2)=-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1-x2)=-12 equation:



(1-x2)=-12
We move all terms to the left:
(1-x2)-(-12)=0
We add all the numbers together, and all the variables
(-1x^2+1)-(-12)=0
We add all the numbers together, and all the variables
(-1x^2+1)+12=0
We get rid of parentheses
-1x^2+1+12=0
We add all the numbers together, and all the variables
-1x^2+13=0
a = -1; b = 0; c = +13;
Δ = b2-4ac
Δ = 02-4·(-1)·13
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*-1}=\frac{0-2\sqrt{13}}{-2} =-\frac{2\sqrt{13}}{-2} =-\frac{\sqrt{13}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*-1}=\frac{0+2\sqrt{13}}{-2} =\frac{2\sqrt{13}}{-2} =\frac{\sqrt{13}}{-1} $

See similar equations:

| 5k-20k=80 | | p^2-9p-81=-3 | | 10(m+2)=60 | | (10+4x)+1=15 | | p^2-9p=84 | | 2x–12=44 | | p^2-9p-78=0 | | t^2-8=1/3t^2-2 | | (2b+4)=6 | | 02x=225000 | | -7=8+3w | | 10x-35=0 | | 7*4^4x-4=21 | | 11=-4+3y | | 63-x=180 | | -30x-40=0 | | 180=132-u | | 4+x=(19+x)/2 | | (x-4)^2+(x-2)^2=x^2 | | 3+4=(19+x)/2 | | 3+x=(19+x)/2 | | 58=3u+10 | | -30-40x=0 | | 4(2x-3)+x=15 | | 1-0.01^x=0 | | X2+8=3x+36 | | 4(2-3x)=2x-22 | | 14x-8=6x-3 | | 12-6+8-9+3-7x+3x=18-12+4x | | 5(3a+1)-4a+6=1 | | 12x+4x-6=90 | | 14x+36=180 |

Equations solver categories