(1/((2x-5)(x)))+(1/(5x))=(-2/25)

Simple and best practice solution for (1/((2x-5)(x)))+(1/(5x))=(-2/25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/((2x-5)(x)))+(1/(5x))=(-2/25) equation:


D( x )

x*(2*x-5) = 0

5*x = 0

x*(2*x-5) = 0

x*(2*x-5) = 0

( 2*x-5 )

2*x-5 = 0 // + 5

2*x = 5 // : 2

x = 5/2

( x )

x = 0

5*x = 0

5*x = 0

5*x = 0 // : 5

x = 0

x in (-oo:0) U (0:5/2) U (5/2:+oo)

1/(x*(2*x-5))+1/(5*x) = -2/25 // + -2/25

1/(x*(2*x-5))+1/(5*x)-(-2/25) = 0

1/(x*(2*x-5))+1/(5*x)+2/25 = 0

(1*5*25*x)/(5*25*x*x*(2*x-5))+(1*25*x*(2*x-5))/(5*25*x*x*(2*x-5))+(2*5*x*x*(2*x-5))/(5*25*x*x*(2*x-5)) = 0

1*25*x*(2*x-5)+2*5*x*x*(2*x-5)+1*5*25*x = 0

20*x^3+50*x^2-50*x^2 = 0

20*x^3 = 0

(20*x^3)/(5*25*x*x*(2*x-5)) = 0

(20*x^3)/(5*25*x*x*(2*x-5)) = 0 // * 5*25*x*x*(2*x-5)

20*x^3 = 0

20*x^3 = 0 // : 20

x^3 = 0

x = 0

x in { 0}

x belongs to the empty set

See similar equations:

| 8f+7g-2f-3g+4f+2g-9f-5g+1g= | | (1.4m-4.5)/1.5=8.2 | | (1.2s+3.69)/0.3=47.9 | | 85=17m | | -7=4/u-6 | | (1.04/1)=(100/x) | | 3(3x-7)=2(2x+5) | | (1-X/5)=4 | | 9s-6s+3t= | | 3x=11/22 | | (1-x)/12=-1/2x | | 2a-3=12a-5 | | 6y^2+4y-16=0 | | 7j-4j+7k= | | (1-6x)-8=(1/3x) | | 4a+6=7a-3 | | (1-3x/6)=(x/3)-1 | | -6x^2+53x+9=0 | | 2a-3=5a+6 | | 5y-5=-16y | | (1-2x)1/3=4 | | 5a-4a+2b= | | (1-2x)/(8-x)=3/1 | | 7g-8+87+95g=56 | | 7c+8d+5c= | | (1+z)/z=0 | | (1+x)/(2x)=12x | | 9f+4g+2f= | | (1+P/2)=3 | | (1+k)/3=-17 | | 7v+2u+4v= | | (e^5x+6)=15 |

Equations solver categories