(1/(200x))+x=1

Simple and best practice solution for (1/(200x))+x=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/(200x))+x=1 equation:



(1/(200x))+x=1
We move all terms to the left:
(1/(200x))+x-(1)=0
Domain of the equation: 200x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/200x)+x-1=0
We add all the numbers together, and all the variables
x+(+1/200x)-1=0
We get rid of parentheses
x+1/200x-1=0
We multiply all the terms by the denominator
x*200x-1*200x+1=0
Wy multiply elements
200x^2-200x+1=0
a = 200; b = -200; c = +1;
Δ = b2-4ac
Δ = -2002-4·200·1
Δ = 39200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39200}=\sqrt{19600*2}=\sqrt{19600}*\sqrt{2}=140\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-140\sqrt{2}}{2*200}=\frac{200-140\sqrt{2}}{400} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+140\sqrt{2}}{2*200}=\frac{200+140\sqrt{2}}{400} $

See similar equations:

| (1/(200x)+x=1 | | 200x+(1/x)=1 | | (1/x)+x=0.005 | | 2n−2(4n+5)=−6(n−3)−8 | | x+0.0825x=541.25 | | 15+m/12=21 | | X^2/x-5=25/x-5 | | 1.5a=12 | | 0.5=0.2888x+0.269 | | 160x+32x^2-192=0 | | 14y′+y′′+50y=0 | | 9y′+y′′+14y=0 | | 200=40-1y | | d/14.1-6.7=-18.2 | | |2r+3|=-3 | | 7w+14-3w=92+4w | | w/3.6=8.4 | | 7.8k=97.5 | | -23m=115 | | (5a)^5=3 | | 21r-6=4(7r-2) | | -40x+120=-155x+20 | | 3*0+6*y=1800 | | 64=4*6*2+2*2*h | | 8x+64=3x | | 19X+5y=-7 | | 07x=3.5 | | 12x21=44 | | −2y+1+6=4 | | |−2y+1|+6=4 | | ||−2y+1||+6=4 | | F(n)=9n-12 |

Equations solver categories