(1/(t-1))+(t/(6t-3))

Simple and best practice solution for (1/(t-1))+(t/(6t-3)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/(t-1))+(t/(6t-3)) equation:


D( t )

6*t-3 = 0

t-1 = 0

6*t-3 = 0

6*t-3 = 0

6*t-3 = 0 // + 3

6*t = 3 // : 6

t = 3/6

t = 1/2

t-1 = 0

t-1 = 0

t-1 = 0 // + 1

t = 1

t in (-oo:1/2) U (1/2:1) U (1:+oo)

1/(t-1)+t/(6*t-3) = 0

(1*(6*t-3))/((t-1)*(6*t-3))+(t*(t-1))/((t-1)*(6*t-3)) = 0

1*(6*t-3)+t*(t-1) = 0

t^2+5*t-3 = 0

t^2+5*t-3 = 0

t^2+5*t-3 = 0

DELTA = 5^2-(-3*1*4)

DELTA = 37

DELTA > 0

t = (37^(1/2)-5)/(1*2) or t = (-37^(1/2)-5)/(1*2)

t = (37^(1/2)-5)/2 or t = (-(37^(1/2)+5))/2

(t+(37^(1/2)+5)/2)*(t-((37^(1/2)-5)/2)) = 0

((t+(37^(1/2)+5)/2)*(t-((37^(1/2)-5)/2)))/((t-1)*(6*t-3)) = 0

((t+(37^(1/2)+5)/2)*(t-((37^(1/2)-5)/2)))/((t-1)*(6*t-3)) = 0 // * (t-1)*(6*t-3)

(t+(37^(1/2)+5)/2)*(t-((37^(1/2)-5)/2)) = 0

( t+(37^(1/2)+5)/2 )

t+(37^(1/2)+5)/2 = 0 // - (37^(1/2)+5)/2

t = -((37^(1/2)+5)/2)

( t-((37^(1/2)-5)/2) )

t-((37^(1/2)-5)/2) = 0 // + (37^(1/2)-5)/2

t = (37^(1/2)-5)/2

t in { -((37^(1/2)+5)/2), (37^(1/2)-5)/2 }

See similar equations:

| -6-2(8p-6)=118 | | 15(-9)= | | 8x+14=6x | | 27(5+x)=189 | | -17-5= | | 18y=1/3 | | -6r+4=3 | | -58=-4y+10 | | 2(n-7)+9=9 | | x^4+6x-56=0 | | 5+3x=27-5x | | -19+(-9)= | | 1/6(3x-6)-3=7/12(x-6)-11/24 | | x^2-43x-340=0 | | 5y-15+3y=1 | | -2-(-7)= | | 3p^3-8p^2+7p-2= | | 6x-10y=50 | | 2cosx=-sinx | | 15x-9=6x | | 5x+8=8(x+1)-3x | | 4+5=15 | | -36=2+2w | | 1b-2.7=(-2)+2b | | 5x=3y+12 | | 31/5/17/10 | | 5x^2+5x+7=0 | | z/4+5=15 | | 6(7+6x)-4x=202 | | 5x+10=24-2 | | -26=2m+8 | | 3(T-1)=2(T+3)-T |

Equations solver categories