(1/12)r+(1/18)r=1

Simple and best practice solution for (1/12)r+(1/18)r=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/12)r+(1/18)r=1 equation:



(1/12)r+(1/18)r=1
We move all terms to the left:
(1/12)r+(1/18)r-(1)=0
Domain of the equation: 12)r!=0
r!=0/1
r!=0
r∈R
Domain of the equation: 18)r!=0
r!=0/1
r!=0
r∈R
We add all the numbers together, and all the variables
(+1/12)r+(+1/18)r-1=0
We multiply parentheses
r^2+r^2-1=0
We add all the numbers together, and all the variables
2r^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| y+24=50 | | 10h+5=7h+5 | | .05x=7350 | | 7(x-3)-5=-26 | | 1200m+1000=1500m+1175 | | 6x-3=6+3x | | 2+-3+4x=27 | | 1200m+1000=1500m+11751200m+1000=1500m+1175 | | 3w-9=w*1.69 | | 2p+7/3=2p-3 | | 5x-2(x-4)=x-4 | | 9x+16=19+4x | | 5x+21=6x-4 | | –6x+14=2x–12 | | 3(6c-5)=57 | | 10y=13 | | -4x+5.2=67.6 | | 7x+12x=95. | | 5x-15x=30 | | -4r=-5r+10 | | 2/6x-24=1/6x-6 | | x9=2x | | x+8=-5x+7 | | 81=x+4x+4x+4x+4x | | -56=8(k+50) | | 1x+6=2x-10 | | -30=-10m | | 2.4x-7=17 | | 5x+8x=104. | | 9u=8u+u | | 18r=12 | | 5n+45=5 |

Equations solver categories