(1/16)x-2=5/8

Simple and best practice solution for (1/16)x-2=5/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/16)x-2=5/8 equation:



(1/16)x-2=5/8
We move all terms to the left:
(1/16)x-2-(5/8)=0
Domain of the equation: 16)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/16)x-2-(+5/8)=0
We multiply parentheses
x^2-2-(+5/8)=0
We get rid of parentheses
x^2-2-5/8=0
We multiply all the terms by the denominator
x^2*8-5-2*8=0
We add all the numbers together, and all the variables
x^2*8-21=0
Wy multiply elements
8x^2-21=0
a = 8; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·8·(-21)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*8}=\frac{0-4\sqrt{42}}{16} =-\frac{4\sqrt{42}}{16} =-\frac{\sqrt{42}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*8}=\frac{0+4\sqrt{42}}{16} =\frac{4\sqrt{42}}{16} =\frac{\sqrt{42}}{4} $

See similar equations:

| 5x-38=-2(1-7) | | 1/4x+×=-3+1/2x | | 2(x-2)=3x-9/3 | | 5x-38=2(1-7) | | g*2=2 | | 30k+-19k=-11 | | 49w2–50w=0 | | (7/9)y+5=8 | | 49/s=7 | | 8+q=7 | | 14t^2+33t=0 | | s*3=3 | | -6x+30=-6x-12 | | 2n-5=n+7 | | u/7=8 | | 5x^-35x+15=0 | | p+2=4 | | z/9-3=3 | | (-11/9)x=-1/5 | | p-4=28p=32 | | 10x+8=8x=10 | | d/9=1 | | 8u+3u-6u=5 | | 11-b=2 | | 14v+5v+2v-12v=18 | | 2z−z=14 | | 62=2+b | | 3a-a-a=14 | | 3+t=6 | | 7p-6p=18 | | 6x-33=45 | | 2a-2a+3a-a-a=19 |

Equations solver categories