(1/2)(10t)=5000

Simple and best practice solution for (1/2)(10t)=5000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(10t)=5000 equation:



(1/2)(10t)=5000
We move all terms to the left:
(1/2)(10t)-(5000)=0
Domain of the equation: 2)10t!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+1/2)10t-5000=0
We multiply parentheses
10t^2-5000=0
a = 10; b = 0; c = -5000;
Δ = b2-4ac
Δ = 02-4·10·(-5000)
Δ = 200000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200000}=\sqrt{40000*5}=\sqrt{40000}*\sqrt{5}=200\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{5}}{2*10}=\frac{0-200\sqrt{5}}{20} =-\frac{200\sqrt{5}}{20} =-10\sqrt{5} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{5}}{2*10}=\frac{0+200\sqrt{5}}{20} =\frac{200\sqrt{5}}{20} =10\sqrt{5} $

See similar equations:

| 3(2x+1)=2x+39 | | -2(5x+1)+12=10 | | -5=-17+x+8 | | -8+6l=19 | | 5x-4/3=4 | | -8+6l=20 | | (1/5)x=125. | | 3/4(4x+80)=-12 | | 11x-(x-7)*8=92 | | 3x+20;x=6 | | 3^x=x-2 | | 4(y-1)=y+5 | | 4^2x+4=5x | | 497.4=3.14*6*6*x | | 2x+6=x+48=4x+16 | | (X-12)+(x-7.50)+x=63 | | 3(4+n)=n+6 | | x-5x-10=2+2x | | 3x=646+x | | H=-16^2-8t+20 | | -9(k-7)=-54 | | 2x+10=x^2-4x-17 | | 8z=56/13 | | 2p+41/2=15 | | 2p^2-3p-8=0 | | v=6.1*4.4*8 | | 1/4X-1/8y=2/3 | | 4n=5-8n/3 | | .85xX=22000 | | -5(3y-13)+2y=13 | | 12-(25/x)=4+(7/x) | | x/1.9+4=-1.4 |

Equations solver categories