(1/2)(10t)=50;000

Simple and best practice solution for (1/2)(10t)=50;000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(10t)=50;000 equation:



(1/2)(10t)=50000
We move all terms to the left:
(1/2)(10t)-(50000)=0
Domain of the equation: 2)10t!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+1/2)10t-50000=0
We multiply parentheses
10t^2-50000=0
a = 10; b = 0; c = -50000;
Δ = b2-4ac
Δ = 02-4·10·(-50000)
Δ = 2000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2000000}=\sqrt{1000000*2}=\sqrt{1000000}*\sqrt{2}=1000\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1000\sqrt{2}}{2*10}=\frac{0-1000\sqrt{2}}{20} =-\frac{1000\sqrt{2}}{20} =-50\sqrt{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1000\sqrt{2}}{2*10}=\frac{0+1000\sqrt{2}}{20} =\frac{1000\sqrt{2}}{20} =50\sqrt{2} $

See similar equations:

| c=131.88+56.32 | | 2(2x-8)+2x=20 | | -3q=11 | | 3.5x+1.5=9.5 | | -3q=-11 | | e/3-2=4 | | (1+x)^3=1.1 | | c=376.80+100.48 | | c=2(3.14)(16) | | 6x^2-12x=-48 | | c=2(3.14)(60) | | -2(7b-3)=90 | | F(x)=130000(1.06) | | c=2(3.14)(40) | | c=2(3.14)(4)(10) | | 12=2.4c | | -9=-5+k | | 4x+4x-x=0 | | c=2(3.14)(50) | | c=188.4+56.52 | | (5-3x)-(-24x+6)=(8x+11)-(3x-6) | | m–1= | | ½(6x-10)+⅓(6+9x=) | | c=2(3.14)(30) | | -8=2v | | 3+2+2*10=n | | (x+2)^2-20=0 | | 2x-15+60=180 | | 2R+2x=6 | | c=2(3.14)(81) | | 5(-2x+5)=50 | | -2,5x-2=-5,7x+6 |

Equations solver categories