If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(10x+20)=15x-10
We move all terms to the left:
(1/2)(10x+20)-(15x-10)=0
Domain of the equation: 2)(10x+20)!=0We add all the numbers together, and all the variables
x∈R
(+1/2)(10x+20)-(15x-10)=0
We get rid of parentheses
(+1/2)(10x+20)-15x+10=0
We multiply parentheses ..
(+10x^2+1/2*20)-15x+10=0
We multiply all the terms by the denominator
(+10x^2+1-15x*2*20)+10*2*20)=0
We add all the numbers together, and all the variables
(+10x^2+1-15x*2*20)=0
We get rid of parentheses
10x^2-15x*2*20+1=0
Wy multiply elements
10x^2-600x*2+1=0
Wy multiply elements
10x^2-1200x+1=0
a = 10; b = -1200; c = +1;
Δ = b2-4ac
Δ = -12002-4·10·1
Δ = 1439960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1439960}=\sqrt{4*359990}=\sqrt{4}*\sqrt{359990}=2\sqrt{359990}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1200)-2\sqrt{359990}}{2*10}=\frac{1200-2\sqrt{359990}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1200)+2\sqrt{359990}}{2*10}=\frac{1200+2\sqrt{359990}}{20} $
| H=-16t^2-29t+120 | | 3x+7=-6x-56= | | 9+5x=-17-8x= | | 4n-6(3n-4)=108 | | 3/(2x-4)=4/(x-2) | | (1/2)(4h+14)=4h+1 | | 2k+3=4k–5 | | 4u+2u+40=3u-1u+100 | | −3x−21=7x+49. | | 6y-5=4y+-1 | | 5f+100=4f+11f+50 | | x^2-x+0.165=0 | | 10r=10000000000 | | 3.75x9=22 | | 10r=10,000,000,000 | | 5x^-9x-40=0 | | 37/3=111/x | | 13x-3x+45=1x+90 | | x^2+7x=6=0 | | x²+12x+36=6 | | 1.5=x÷x-7.0 | | 4h+5h+7=2h+28 | | 1.5=x/x-7.0 | | 5+7(2-5x)=2(9x+1)-(13-57 | | 4r+10=2r+40 | | 3n-7=6(2n-2 | | -24+-0.8y=-12 | | r−5−3r=3 | | 6/7x=1/14 | | 1.5(x-7.0)=x | | x^2-5x+15=0 | | ⅖(3x+2)=⅕(3x-6) |