If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(20-4a)=6-a
We move all terms to the left:
(1/2)(20-4a)-(6-a)=0
Domain of the equation: 2)(20-4a)!=0We add all the numbers together, and all the variables
a∈R
(+1/2)(-4a+20)-(-1a+6)=0
We get rid of parentheses
(+1/2)(-4a+20)+1a-6=0
We multiply parentheses ..
(-4a^2+1/2*20)+1a-6=0
We multiply all the terms by the denominator
(-4a^2+1+1a*2*20)-6*2*20)=0
We add all the numbers together, and all the variables
(-4a^2+1+1a*2*20)=0
We get rid of parentheses
-4a^2+1a*2*20+1=0
Wy multiply elements
-4a^2+40a*2+1=0
Wy multiply elements
-4a^2+80a+1=0
a = -4; b = 80; c = +1;
Δ = b2-4ac
Δ = 802-4·(-4)·1
Δ = 6416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6416}=\sqrt{16*401}=\sqrt{16}*\sqrt{401}=4\sqrt{401}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-4\sqrt{401}}{2*-4}=\frac{-80-4\sqrt{401}}{-8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+4\sqrt{401}}{2*-4}=\frac{-80+4\sqrt{401}}{-8} $
| 5x+-1x=9 | | -7x=1-6x | | -x=6=-4x-6 | | 5x+(-1x)=9 | | 2x=-3x+12-2x | | x^2-10.5x+5=0 | | 3.7-18=-4.3x-34 | | ½(20-4a)=6-a | | -1x+16=10-3x | | -5x+16=10-3x | | 6(x-1)+4(x-2)^2=2(35-x) | | 6y=(8*6) | | -3x^2+26x-56=0 | | 3x=12=7x-12 | | 2x+5=4x-32 | | 2x+3+4x+27=180 | | 4y+6-4(-4y-2)=2(y-1) | | 2x+16=10-3x | | 4c=5c-17 | | 8x+4=11x-5* | | 5x+2x+3x=108 | | 9x+7x+66+6x+22=198 | | 8x-18=-74 | | 6x+11-(9x+2)=5x+33 | | 3x/7x=18 | | s(235)=23 | | -t=9(t-10)−t=9(t−10) | | 3x-5=-3x+10 | | 6(y+3)=-2(4y-4)+2y | | 0.4x-0.8(x-4)=1.3x=1.9 | | 2x+1x=-24 | | 2/1.2=5/v |