(1/2)(4x+2)=2x-4

Simple and best practice solution for (1/2)(4x+2)=2x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(4x+2)=2x-4 equation:



(1/2)(4x+2)=2x-4
We move all terms to the left:
(1/2)(4x+2)-(2x-4)=0
Domain of the equation: 2)(4x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)(4x+2)-(2x-4)=0
We get rid of parentheses
(+1/2)(4x+2)-2x+4=0
We multiply parentheses ..
(+4x^2+1/2*2)-2x+4=0
We multiply all the terms by the denominator
(+4x^2+1-2x*2*2)+4*2*2)=0
We add all the numbers together, and all the variables
(+4x^2+1-2x*2*2)=0
We get rid of parentheses
4x^2-2x*2*2+1=0
Wy multiply elements
4x^2-8x*2+1=0
Wy multiply elements
4x^2-16x+1=0
a = 4; b = -16; c = +1;
Δ = b2-4ac
Δ = -162-4·4·1
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{15}}{2*4}=\frac{16-4\sqrt{15}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{15}}{2*4}=\frac{16+4\sqrt{15}}{8} $

See similar equations:

| x+2=7x=37 | | 4(7x-9)=20 | | 11x-3x=-49 | | x+2=7x=32 | | 5=v+29/8 | | 2p-3=5p+3p-9 | | (7x+1)+38+x=180 | | Y=-22x+14 | | 10f+24=84 | | 7(4x+2)=5+14x-12 | | 6-p=7 | | 9(g-98)=54 | | 0=18+c | | 12(a+3)=48 | | –10m−3=–8m−9 | | 28x+196=72x-24 | | 2(x+6)+3=4+x | | -1+-6q=-8q+5 | | 7m-7-5m+17=2+4m | | 47=p/8+45 | | 8q-16=24 | | -3x+2-5x=34 | | 4+4x=2x+6+2x-5 | | -1(6x-2)=5x+5 | | 3/x=3.6 | | a9=72 | | 9x−3=10x | | 50x+50=80x-460 | | 10x+128131=180 | | 9j−3=10j | | 3n^2-8n+8=3 | | 21/15=x/5 |

Equations solver categories