If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(5x+10)=12x-2
We move all terms to the left:
(1/2)(5x+10)-(12x-2)=0
Domain of the equation: 2)(5x+10)!=0We add all the numbers together, and all the variables
x∈R
(+1/2)(5x+10)-(12x-2)=0
We get rid of parentheses
(+1/2)(5x+10)-12x+2=0
We multiply parentheses ..
(+5x^2+1/2*10)-12x+2=0
We multiply all the terms by the denominator
(+5x^2+1-12x*2*10)+2*2*10)=0
We add all the numbers together, and all the variables
(+5x^2+1-12x*2*10)=0
We get rid of parentheses
5x^2-12x*2*10+1=0
Wy multiply elements
5x^2-240x*1+1=0
Wy multiply elements
5x^2-240x+1=0
a = 5; b = -240; c = +1;
Δ = b2-4ac
Δ = -2402-4·5·1
Δ = 57580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{57580}=\sqrt{4*14395}=\sqrt{4}*\sqrt{14395}=2\sqrt{14395}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-2\sqrt{14395}}{2*5}=\frac{240-2\sqrt{14395}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+2\sqrt{14395}}{2*5}=\frac{240+2\sqrt{14395}}{10} $
| 21+h=15 | | 122=x+41 | | y=3(-2-1)+8 | | 0.2x+3/2x=x+30 | | 17+a/3=-14 | | 122=x+20 | | F(x)=0.25×^3 | | 2n+9=37 | | 42+t/9=16.3 | | 140=x+.2x | | 123=x+42 | | 9x+2=5x+3- | | 5(x-1)+6=2x+1+3x | | 1/3•2t=8/3 | | 1/4y+2/4=5-1/4 | | 40(p+41)=5248 | | a-4=16+6a | | 5•a=12 | | a+2*25=180 | | —6x—9=12x—3 | | 7p^2-8=-28 | | X/3+3x+7=147 | | 16+w=3w | | X/3x+7=147 | | P=2(4x-7)+2x+1 | | (x-21)+78=180 | | 2x-10=x+30+70 | | 2g-9+9=6 | | 6=b-56/6 | | 9u+15=24 | | |2x-1|=19 | | q/9+36=39 |