(1/2)(7x+2)=7x

Simple and best practice solution for (1/2)(7x+2)=7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(7x+2)=7x equation:



(1/2)(7x+2)=7x
We move all terms to the left:
(1/2)(7x+2)-(7x)=0
Domain of the equation: 2)(7x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)(7x+2)-7x=0
We add all the numbers together, and all the variables
-7x+(+1/2)(7x+2)=0
We multiply parentheses ..
(+7x^2+1/2*2)-7x=0
We multiply all the terms by the denominator
(+7x^2+1-7x*2*2)=0
We get rid of parentheses
7x^2-7x*2*2+1=0
Wy multiply elements
7x^2-28x*2+1=0
Wy multiply elements
7x^2-56x+1=0
a = 7; b = -56; c = +1;
Δ = b2-4ac
Δ = -562-4·7·1
Δ = 3108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3108}=\sqrt{4*777}=\sqrt{4}*\sqrt{777}=2\sqrt{777}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-2\sqrt{777}}{2*7}=\frac{56-2\sqrt{777}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+2\sqrt{777}}{2*7}=\frac{56+2\sqrt{777}}{14} $

See similar equations:

| 3f−4=2 | | 6−2j=2 | | 2x-5(-2)=10 | | 8.4+4=6.2x+21.6 | | 189=-6+21x-54 | | -73+18=-3x+14x | | 8^x+5=4^x-6 | | 3(x-2)+4=x+5 | | -29m=-261 | | 8(8x-6)=24x | | -27+21=7x+9x | | n2-4n-165=0 | | 2u-32=6(u-8) | | X^2-2x=-2.9 | | -2.4=0.8u+0.4u | | Y=8m4/8m | | 2.5x*1x=1125 | | 2p–14=(p+5) | | 4x–8=36 | | -4(u+1)=2u-40 | | 1.4/x=0.4 | | 9/8t=8/9 | | X=8+x | | X^-2x=-2.9 | | 7(x+4)-3(x+1)=33 | | 12x+x=3(3-2x) | | 2x=2(x-1) | | 39=-8x+3(x+3) | | 4n+3÷2n+2=0 | | 2x+9=4x=11 | | .7=4/x | | 3y−2=16 |

Equations solver categories