(1/2)(8x+6)=35

Simple and best practice solution for (1/2)(8x+6)=35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(8x+6)=35 equation:



(1/2)(8x+6)=35
We move all terms to the left:
(1/2)(8x+6)-(35)=0
Domain of the equation: 2)(8x+6)!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)(8x+6)-35=0
We multiply parentheses ..
(+8x^2+1/2*6)-35=0
We multiply all the terms by the denominator
(+8x^2+1-35*2*6)=0
We get rid of parentheses
8x^2+1-35*2*6=0
We add all the numbers together, and all the variables
8x^2-419=0
a = 8; b = 0; c = -419;
Δ = b2-4ac
Δ = 02-4·8·(-419)
Δ = 13408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13408}=\sqrt{16*838}=\sqrt{16}*\sqrt{838}=4\sqrt{838}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{838}}{2*8}=\frac{0-4\sqrt{838}}{16} =-\frac{4\sqrt{838}}{16} =-\frac{\sqrt{838}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{838}}{2*8}=\frac{0+4\sqrt{838}}{16} =\frac{4\sqrt{838}}{16} =\frac{\sqrt{838}}{4} $

See similar equations:

| x-(0.3x)=899 | | 2/3(4x-3)=8 | | F(10)=8n-30 | | -4x-16=6x+5 | | ⎼7n+5= | | 4(-3x+6)=-46 | | 3x+30+7x+30=180 | | x2−14x=−13 | | n^2-44=5 | | −3x2+9=30−3x2+9=30 | | 1099=150+6.5a | | 6/5x-7/30=7/30 | | −3(1−n)=−6−6n | | 5(w+8)=-7w+28 | | x^-1/3=3x^-4/3+10x^-7/3 | | 7(3x-11)=-161 | | -4v+3=9(v+9) | | 4x-10+2x-14=90 | | 25=9=3.2h | | -9=7(x-7)-3x | | 3b-16÷4=16 | | 9(4x-1=27) | | =(x–3)2+4 | | 3(b-16÷4)=33 | | 14x-40=-6x-5+45 | | 10^3x+10=10^x+7 | | -4(2x-6)=32 | | 14x-40=-6x-4 | | 7+-2y=5 | | 9x+40=5x+100 | | |9x+10|=x+13 | | 36+5y=33 |

Equations solver categories