If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(8x-4)=3x
We move all terms to the left:
(1/2)(8x-4)-(3x)=0
Domain of the equation: 2)(8x-4)!=0We add all the numbers together, and all the variables
x∈R
(+1/2)(8x-4)-3x=0
We add all the numbers together, and all the variables
-3x+(+1/2)(8x-4)=0
We multiply parentheses ..
(+8x^2+1/2*-4)-3x=0
We multiply all the terms by the denominator
(+8x^2+1-3x*2*-4)=0
We get rid of parentheses
8x^2-3x*2*+1-4=0
We add all the numbers together, and all the variables
8x^2-3x*2*-3=0
Wy multiply elements
8x^2-6x^2-3=0
We add all the numbers together, and all the variables
2x^2-3=0
a = 2; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·2·(-3)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*2}=\frac{0-2\sqrt{6}}{4} =-\frac{2\sqrt{6}}{4} =-\frac{\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*2}=\frac{0+2\sqrt{6}}{4} =\frac{2\sqrt{6}}{4} =\frac{\sqrt{6}}{2} $
| -3/2(-x-2)=6 | | 12.2(10x÷5))=59 | | 14x+4=13x+12 | | W-2+2w=6+5w | | 7(9+f)=147 | | 1/3x+9=5 | | 20k-41=8k+19 | | 5y+12=3+8y | | 2x+204=08 | | x+56=2x+78 | | 3.2x−1.7x+5.5=10 | | 3r-6×4=20r | | (1/2)8x-4)=3x | | x/4+12=-5 | | 2x-3=9(4) | | Z=8x | | 5a+8+a=-22 | | 80+0.60x=60+0.70x | | -6+v/2=-8 | | -3(2x+7)=2x-7 | | (4n+17)+(n-2)=189 | | 4x•60=60 | | x+4/3=-3 | | G=4x-1 | | (z*z+6=-36 | | 124-19x=9 | | 5/x=24/10 | | 3x+x+1.5x+180=445 | | x+1/6=3/10 | | 14x+4+13x+12=180 | | r-6=6+4r,r | | 4x+3+8x+-11=10.5x+4 |