(1/2)(x+8)=10

Simple and best practice solution for (1/2)(x+8)=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(x+8)=10 equation:



(1/2)(x+8)=10
We move all terms to the left:
(1/2)(x+8)-(10)=0
Domain of the equation: 2)(x+8)!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)(x+8)-10=0
We multiply parentheses ..
(+x^2+1/2*8)-10=0
We multiply all the terms by the denominator
(+x^2+1-10*2*8)=0
We get rid of parentheses
x^2+1-10*2*8=0
We add all the numbers together, and all the variables
x^2-159=0
a = 1; b = 0; c = -159;
Δ = b2-4ac
Δ = 02-4·1·(-159)
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{159}}{2*1}=\frac{0-2\sqrt{159}}{2} =-\frac{2\sqrt{159}}{2} =-\sqrt{159} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{159}}{2*1}=\frac{0+2\sqrt{159}}{2} =\frac{2\sqrt{159}}{2} =\sqrt{159} $

See similar equations:

| -4y+1=-27 | | .6+19.99=-18.17-6.6y | | Y=3/4(5)+b | | 2m/7+3/11=1 | | -2m+3=5m+25 | | 1/7x+3=-8 | | 21x-5=3(7x-2) | | (6^n+12^n)/(1+2^n)=0 | | 8(-3+x)=96 | | 6n-6=1+5(n-2) | | 5-10y+18=-3(5y-7)+5y | | 5m+-1=4m+5 | | 3-(2n+1)+7=-5 | | 1/7x-5=9+x/14 | | X+20+3x=-12-3x-17 | | 14.35÷s=-5.2 | | 13n-16=4n-7 | | 2y-10=-32 | | -8p+3=29- | | 75=500(0.05)t | | 7n-3=2n+17 | | 17/3(x-3/2)=-5/4 | | 75=500(0.5)t | | k–8=–9–k | | 4/7+7m/3=62/21 | | -5+2x=8x=7 | | 2x-9.7=5x | | X²-7=6x | | 4+10r=-9-7+6r | | 43-3x=15+11x | | 0.4x-0.05+0.1x=0.3 | | -3/2y=-9 |

Equations solver categories