(1/2)(x+8)=60

Simple and best practice solution for (1/2)(x+8)=60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(x+8)=60 equation:



(1/2)(x+8)=60
We move all terms to the left:
(1/2)(x+8)-(60)=0
Domain of the equation: 2)(x+8)!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)(x+8)-60=0
We multiply parentheses ..
(+x^2+1/2*8)-60=0
We multiply all the terms by the denominator
(+x^2+1-60*2*8)=0
We get rid of parentheses
x^2+1-60*2*8=0
We add all the numbers together, and all the variables
x^2-959=0
a = 1; b = 0; c = -959;
Δ = b2-4ac
Δ = 02-4·1·(-959)
Δ = 3836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3836}=\sqrt{4*959}=\sqrt{4}*\sqrt{959}=2\sqrt{959}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{959}}{2*1}=\frac{0-2\sqrt{959}}{2} =-\frac{2\sqrt{959}}{2} =-\sqrt{959} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{959}}{2*1}=\frac{0+2\sqrt{959}}{2} =\frac{2\sqrt{959}}{2} =\sqrt{959} $

See similar equations:

| (D-1)^2=x | | 9x+x-5x=6x5 | | 1/2(x+8)=60 | | 2/3(5n-2)=12 | | 3(a+7)+6a-3(a+2)=25 | | 5(x+2)-3x+3(x+4)=23 | | 4(n-4)=7 | | (3x+8)-9=-5 | | (2p-3)(p+1)-p(2)=51 | | 3-9(9+2m)=m | | 1/2+7/27=y/18 | | 8x^2+2x–6=0 | | 8x2+2x–6=0 | | 12−1/5r=2r+1 | | 3x+4=2x+13= | | 3m+4m=120 | | x^2+4x=720 | | 1.8y-2=0.6y+4 | | 3(2x=1)=4+10 | | 8x^2-3+4x=0 | | (3k-2)=2(k=2 | | 0=-1/x^2+4 | | 6x−5=0 | | (X-6)+3/x=2/3 | | 4m+3+m-7=3(6m+1)-(7-m) | | x²+6x=0 | | x²-3x=0 | | X^2-(5/3)x+(25/36)=0 | | 3x²=300 | | 3x²-4=2 | | x=12x+.09(20,000-x) | | x=10x=-5 |

Equations solver categories