(1/2)(y+1)=9

Simple and best practice solution for (1/2)(y+1)=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(y+1)=9 equation:



(1/2)(y+1)=9
We move all terms to the left:
(1/2)(y+1)-(9)=0
Domain of the equation: 2)(y+1)!=0
y∈R
We add all the numbers together, and all the variables
(+1/2)(y+1)-9=0
We multiply parentheses ..
(+y^2+1/2*1)-9=0
We multiply all the terms by the denominator
(+y^2+1-9*2*1)=0
We get rid of parentheses
y^2+1-9*2*1=0
We add all the numbers together, and all the variables
y^2-17=0
a = 1; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·1·(-17)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{17}}{2*1}=\frac{0-2\sqrt{17}}{2} =-\frac{2\sqrt{17}}{2} =-\sqrt{17} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{17}}{2*1}=\frac{0+2\sqrt{17}}{2} =\frac{2\sqrt{17}}{2} =\sqrt{17} $

See similar equations:

| 25x/5-7x=12. | | 7x+20=200-2x | | 7z+5=9z-3. | | 2y/16-65=0 | | 4×-9=x+12 | | 2x+16=4x-10 | | 5(x+2)+9=54 | | 4x+16=4x-10 | | 2x+2(x-2)=16 | | 3x-2=13+17x | | 4x-2=8(x-2) | | 7x-6=5(x+5)+3 | | 26+5x-3+4x=2+x-11 | | 2x/5+x/3=9 | | 5t^-7t-60=0 | | 2x*5+x*3=9 | | 2m^*27=6 | | (6x-5)=(7x+12) | | r2+3r-4=0 | | (3t-1)(3t+1)=0 | | 4(10–x)=12 | | 2^3n+2*4^n-1/8^n=64 | | 9x3-4x2+2x=0 | | 2^3n+2*4^n-1/8n=64 | | 3(2x–1)=9 | | 3(2x+10)=6 | | 4x+199=12x-9 | | -9d-24=-3(d+8)=6d | | x+7.1=12.0 | | Y-3=4(x-9) | | 8(3k+6)=3(k-5) | | 3x(2x-10)=2(2x-12) |

Equations solver categories