(1/2)(z+2)=4

Simple and best practice solution for (1/2)(z+2)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(z+2)=4 equation:



(1/2)(z+2)=4
We move all terms to the left:
(1/2)(z+2)-(4)=0
Domain of the equation: 2)(z+2)!=0
z∈R
We add all the numbers together, and all the variables
(+1/2)(z+2)-4=0
We multiply parentheses ..
(+z^2+1/2*2)-4=0
We multiply all the terms by the denominator
(+z^2+1-4*2*2)=0
We get rid of parentheses
z^2+1-4*2*2=0
We add all the numbers together, and all the variables
z^2-15=0
a = 1; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·1·(-15)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*1}=\frac{0-2\sqrt{15}}{2} =-\frac{2\sqrt{15}}{2} =-\sqrt{15} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*1}=\frac{0+2\sqrt{15}}{2} =\frac{2\sqrt{15}}{2} =\sqrt{15} $

See similar equations:

| 6x2−18x−240=0 | | 5x^2−20x+15=0 | | x²+8x+4=0 | | 5/8=7b-1/4 | | 1/2(x+5/2)=15/4 | | 5t2=12t | | 12−.2r=2r+1 | | 5+2r=11 | | -.52=2.3+u/3 | | 3x=750 | | a2+4a+36=0 | | -9-(1-13n)=12n-19 | | 25-6x=22.36 | | 69x=652 | | -5.2=2.3+u/3 | | 68x=652 | | 32=10x-2x | | -5.2=2.3=u/3 | | 3.4+w/4=-3.2 | | 88-w=162 | | Y=x2+3x+6 | | 3(z-1)=15 | | 2√x+1=4x-8 | | 103-w=165 | | 14=2(f+1) | | (x-1)(5x-2)=0 | | X^2+17x+33/4=0 | | 3^7=9^2x+3 | | 7-4(9x+6)=5 | | 2(7x-7)=7(2x*3)-7 | | 17x+10=67 | | 24=8v-2v |

Equations solver categories