If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(2p+9)=-p+5
We move all terms to the left:
(1/2)(2p+9)-(-p+5)=0
Domain of the equation: 2)(2p+9)!=0We add all the numbers together, and all the variables
p∈R
(+1/2)(2p+9)-(-1p+5)=0
We get rid of parentheses
(+1/2)(2p+9)+1p-5=0
We multiply parentheses ..
(+2p^2+1/2*9)+1p-5=0
We multiply all the terms by the denominator
(+2p^2+1+1p*2*9)-5*2*9)=0
We add all the numbers together, and all the variables
(+2p^2+1+1p*2*9)=0
We get rid of parentheses
2p^2+1p*2*9+1=0
Wy multiply elements
2p^2+18p*9+1=0
Wy multiply elements
2p^2+162p+1=0
a = 2; b = 162; c = +1;
Δ = b2-4ac
Δ = 1622-4·2·1
Δ = 26236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26236}=\sqrt{4*6559}=\sqrt{4}*\sqrt{6559}=2\sqrt{6559}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(162)-2\sqrt{6559}}{2*2}=\frac{-162-2\sqrt{6559}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(162)+2\sqrt{6559}}{2*2}=\frac{-162+2\sqrt{6559}}{4} $
| 15x-17=9x+7 | | 8(s-93)=-8 | | 2(5)y+4=34 | | -4x-4(5x+10)=176 | | 8j+18=74 | | 3x-27=6x-63 | | x+(x+2)+x+4=-60 | | x+(x+2)+x+4=-18 | | x/6+5=-10 | | x+(x+2)+x+4=258 | | -5+2(7x+17)=-11 | | 6x+13=9x+7 | | 7x+6(5x)=115 | | -5x+7=180 | | x+(x+2)+x+4=156 | | 4(0)+y=7 | | x+(x+2)+x+4=48 | | -1-b=9 | | x+(x+2)+x+4=12 | | -175=26g | | x+3/2=-6 | | x+(x+2)=-10 | | -6p-5p=12-8p | | 0.3(10x+17)=4.5(0.2x+5) | | x+(x+2)=206 | | q/9+11=14 | | 7x+4(7x-9)=-183 | | X(y+1)=260 | | 9g+18=54 | | 90=5(q+12) | | -17+q/8=12 | | 92=b/9+83 |