If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)-(1/8)q=(q-1)/4
We move all terms to the left:
(1/2)-(1/8)q-((q-1)/4)=0
Domain of the equation: 8)q!=0We add all the numbers together, and all the variables
q!=0/1
q!=0
q∈R
-(+1/8)q-((q-1)/4)+(+1/2)=0
We multiply parentheses
-q^2-((q-1)/4)+(+1/2)=0
We get rid of parentheses
-q^2-((q-1)/4)+1/2=0
We calculate fractions
-q^2+(-((q-1)*2)/()+()/()=0
We calculate terms in parentheses: +(-((q-1)*2)/()+()/(), so:We add all the numbers together, and all the variables
-((q-1)*2)/()+()/(
We add all the numbers together, and all the variables
-((q-1)*2)/()+1
We multiply all the terms by the denominator
-((q-1)*2)+1*()
We calculate terms in parentheses: -((q-1)*2), so:We add all the numbers together, and all the variables
(q-1)*2
We multiply parentheses
2q-2
Back to the equation:
-(2q-2)
-(2q-2)
We get rid of parentheses
-2q+2
Back to the equation:
+(-2q+2)
-1q^2+(-2q+2)=0
We get rid of parentheses
-1q^2-2q+2=0
a = -1; b = -2; c = +2;
Δ = b2-4ac
Δ = -22-4·(-1)·2
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{3}}{2*-1}=\frac{2-2\sqrt{3}}{-2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{3}}{2*-1}=\frac{2+2\sqrt{3}}{-2} $
| x*(2*x-4)=x-2 | | 4v+14=94 | | 3-b/4=1 | | 25x-10x=x-42 | | 12-7x=9x | | -3x+3=-3(2x+6) | | -3.1+y8=-15.9 | | 341=22h+77 | | 92^x=8 | | 9(x+9)+x=3(x+4)+2 | | 9625=6500+125n | | -7(m-11)=-182 | | 0=4x^2+0x-4 | | -6x+3=-9x-12 | | F(x)=4x^2+0x-4 | | -3*x^2-5*x-3=6*x+7 | | 8(b+1)+4=3(2b–8)–16 | | 9-x/2=2x | | x-((x+288,91)*6,35)/100=2900 | | 2x+.7=4.3 | | x-2x+7=5x-5 | | -2(x+3)+4=6(x+3)+7 | | X+6(x+2=-2 | | 62=4v-14 | | 4x-2(x-5)=-2+5x-2 | | 635^x=5 | | x-((x+288,91)*6,35/100)=2900 | | 1/x(3x+152)x=2 | | 3x=80-8 | | 1/x(3x+152)x=3 | | 2x-2/2x+8=3/4 | | (X+3)^2+y^2=16 |