(1/2)3x+1=32

Simple and best practice solution for (1/2)3x+1=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)3x+1=32 equation:



(1/2)3x+1=32
We move all terms to the left:
(1/2)3x+1-(32)=0
Domain of the equation: 2)3x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)3x+1-32=0
We add all the numbers together, and all the variables
(+1/2)3x-31=0
We multiply parentheses
3x^2-31=0
a = 3; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·3·(-31)
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{93}}{2*3}=\frac{0-2\sqrt{93}}{6} =-\frac{2\sqrt{93}}{6} =-\frac{\sqrt{93}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{93}}{2*3}=\frac{0+2\sqrt{93}}{6} =\frac{2\sqrt{93}}{6} =\frac{\sqrt{93}}{3} $

See similar equations:

| 8+3x=-4x-6 | | 6=6(2x–4)+3x  | | 4+x=5x–9–(2x–3)  | | (10x+6)+(12–4x)=0  | | B112x–75=800+12x | | x+2=83x=122x–3=1 | | 3•x-50=-44 | | 7x9+530= | | X×y=80 | | x+x+x-1/3-1/2-3=x | | 3/5x=1/2x=1/2 | | x+15=35-15 | | 3x2–12x+11=0. | | 3(11+7b)=3-(b+8) | | 4(6a-3)=6+(a-7)+2a | | 12x3–8x=0. | | 8.50x+55.00=124 | | 18,4x=4 | | -7x=63 | | 4a+8-2a-6= | | 9x-80=6x+40 | | 5x/3+2=x+4 | | 9x–4=6x+5 | | x=(17x-28) | | 7x–2=0 | | 5(3x–4)=7(2x–3) | | 5(3x–4)=7(2x–3 | | 6x+36–2x+45=3x+88–8x+47 | | 6x–8+5x=11x+3 | | (0,5x+3)+x=27 | | 2/3x-4x+1=0 | | x-510=0,85x |

Equations solver categories