If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)m-(3/4)(8)=16
We move all terms to the left:
(1/2)m-(3/4)(8)-(16)=0
Domain of the equation: 2)m!=0determiningTheFunctionDomain (1/2)m-16-(3/4)8=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
(+1/2)m-16-(+3/4)8=0
We multiply parentheses
m^2-16-3/4*8=0
We multiply all the terms by the denominator
m^2*4*8-3-16*4*8=0
We add all the numbers together, and all the variables
m^2*4*8-515=0
Wy multiply elements
32m^2*8-515=0
Wy multiply elements
256m^2-515=0
a = 256; b = 0; c = -515;
Δ = b2-4ac
Δ = 02-4·256·(-515)
Δ = 527360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{527360}=\sqrt{1024*515}=\sqrt{1024}*\sqrt{515}=32\sqrt{515}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{515}}{2*256}=\frac{0-32\sqrt{515}}{512} =-\frac{32\sqrt{515}}{512} =-\frac{\sqrt{515}}{16} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{515}}{2*256}=\frac{0+32\sqrt{515}}{512} =\frac{32\sqrt{515}}{512} =\frac{\sqrt{515}}{16} $
| -10(3x-9)=-30 | | |2x-5|=|x+4| | | 125m=100m+38,400=40,600-175m | | n/10=-20 | | -(7x+3)=-17 | | x900=x² | | d+4=19 | | -26-8x=6(5+8x) | | 5(x-2)-3x=3x-8x+7 | | -3p=2/3p-11 | | 9(2x-1)=-135 | | 4(p+5)=3(p-2)+p+26 | | (x-10)=(4x-10) | | 1/4(3x-1)=2/5(3x+1) | | x25=3,5x-45 | | -10s+-s=11 | | 3x+3+5x+4=6x+17 | | +2.2=0.08x–7.8 | | 3(x-1)+5x=25 | | -3x-8(x+7)=-38-8x | | 3m=-30 | | 0.2x+0.4=2.2 | | 3×3.14×d=12×3.14 | | 20p-17p=9 | | f9+ 31=34 | | 4(-1x+2)=40 | | -8(4r-1)-8=-r-31 | | 12x-16=8x | | -24p^2+40p=0 | | 5(3x+15)=75 | | 1+2u=11 | | X/3+x/4=5 |