(1/2)n-19=-14

Simple and best practice solution for (1/2)n-19=-14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)n-19=-14 equation:



(1/2)n-19=-14
We move all terms to the left:
(1/2)n-19-(-14)=0
Domain of the equation: 2)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+1/2)n-19-(-14)=0
We add all the numbers together, and all the variables
(+1/2)n-5=0
We multiply parentheses
n^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $

See similar equations:

| 3x2+4=31 | | 9(-4.5y-5.4)-y=17 | | 3x-4=6x+2/7 | | -24x+64=0 | | 28(5)=2x | | –2=–2n+2 | | c/(-7)+25=27 | | –12=t3− 16 | | 2(2x+3)=21 | | 3x=5x-64=180 | | x+3/2=x/2=1 | | 2x/4-6=18 | | -10(s+3)=28 | | 6(x-11)=-24 | | y2− 2=1 | | 3k+1/2=18 | | 2(4y-3)7-22y=7-3.5 | | 2x/5+10=35 | | 2,000+10x=1,000+6x | | 44=d+(-18) | | -2(t+8)=15 | | -10=6+b | | 3^(2x-1)/9=81.x= | | (26.8^2)-(26^2)=x^2 | | 12=3p−6 | | 10b−30=30 | | 3.67y+8=y+7 | | 4x^2+6x+27=14+2x | | 3n+8=3n-9 | | 8x-27=63 | | 6x-7=-x+42x | | 17=2+3c |

Equations solver categories