(1/2)t+9=17

Simple and best practice solution for (1/2)t+9=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)t+9=17 equation:



(1/2)t+9=17
We move all terms to the left:
(1/2)t+9-(17)=0
Domain of the equation: 2)t!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+1/2)t+9-17=0
We add all the numbers together, and all the variables
(+1/2)t-8=0
We multiply parentheses
t^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $

See similar equations:

| -1+m/5=1 | | 10k+4=9k-5 | | y=1^2-10 | | 2x-9=2x-13 | | 19-(6x)=49 | | 21​ n+16=4+43​ n | | 9k+1=-9+7k | | -8/7=7u | | -4+9t=9t-4 | | 112=2(w+11) | | 2x-3=2+5x | | 3x+2+2x=35 | | 10(x+3)^2+80=0 | | p/16+1=2 | | -4(-5x+5)=-100 | | 8x-90=2x-35 | | 25x-7-17x+2=19x-7-11x+12 | | 5(2x-21)=215 | | .1/7x=-8 | | 3x-7+5=13 | | y=-6^2+2 | | 3x-3-9=-16x-8-x | | 5(y+4)=-7 | | 2x+4+5=21 | | 2y+3y+10=90 | | 187=253-x | | 15x+10=44 | | 5x-2(x+7)=-5+2x+1 | | –4p+6=–7p−1−8 | | 2161(3x)=1000 | | 0.25x-5=0.75-12 | | 1+3h10=h |

Equations solver categories