(1/2)x+(1/3)x=10

Simple and best practice solution for (1/2)x+(1/3)x=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)x+(1/3)x=10 equation:



(1/2)x+(1/3)x=10
We move all terms to the left:
(1/2)x+(1/3)x-(10)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)x+(+1/3)x-10=0
We multiply parentheses
x^2+x^2-10=0
We add all the numbers together, and all the variables
2x^2-10=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $

See similar equations:

| -4=-3+r/12 | | 24^2+r^2=r^2+24r+144 | | 3(2+3)-4y=-3 | | -4=-3+r/15 | | -16t^2+64t+128t=-3 | | m-8/5=-5 | | y=800+2200 | | 24x+120=0 | | -4=-2+v/2 | | 3(t+4)-(2t+3)=-4 | | X/4x+10-1/2=22 | | y=1.2+2.25 | | 27n^2+75=0 | | n/18=5/18 | | 8x–24=2x+12 | | -16t^2+64t+128=t=-3 | | 5+p=14 | | -3x-5+4x=- | | 13x+47=99 | | 7n^2-39n-18=0 | | -12+r=-3 | | H(t)=3t^2+12t-2 | | 20x–15=15x+10 | | -2v+4v=-24 | | 9x-45=63 | | -4+5(6+6r)=266 | | 58=-u/8 | | 1/3x+15=5/6x | | 7x+18=12+5x | | x/2=x+1 | | -24x-45=0.5(26+10x) | | 2x+3x+135=180 |

Equations solver categories