(1/2)x+(x-5)+x=180

Simple and best practice solution for (1/2)x+(x-5)+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)x+(x-5)+x=180 equation:



(1/2)x+(x-5)+x=180
We move all terms to the left:
(1/2)x+(x-5)+x-(180)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)x+(x-5)+x-180=0
We add all the numbers together, and all the variables
x+(+1/2)x+(x-5)-180=0
We multiply parentheses
x^2+x+(x-5)-180=0
We get rid of parentheses
x^2+x+x-5-180=0
We add all the numbers together, and all the variables
x^2+2x-185=0
a = 1; b = 2; c = -185;
Δ = b2-4ac
Δ = 22-4·1·(-185)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{186}}{2*1}=\frac{-2-2\sqrt{186}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{186}}{2*1}=\frac{-2+2\sqrt{186}}{2} $

See similar equations:

| p=15^2×5.20π | | 9x^2+7=11 | | 7(y+6)=91 | | 7(x-2)+5=3(2x-1)+1 | | -4x-10=4x-42 | | -8(6b-9)-17=7 | | 3(2x−4)=8x+4 | | F(n)=-(n)^n-1 | | 2x+16+2x=28x= | | 4x-11=9x+34 | | 7(9x)=30 | | 4x-11=9x+24 | | 3/4r+2=22 | | 7(m−82)=77 | | 2×(x+2)=16 | | 6(2x-7)-3=12x-21 | | (6x-4)=8(3x-2) | | F(n)=-2n^2 | | (0.5x+2=) | | 7a−13=8+4a | | -14+-9t=-32 | | -5+c+9=-6 | | 24.344/c32=10 | | 6x+8-4x=22 | | -489=8(7x-1)+7 | | 3/4(15-6y)-7=-11 | | 7w/8=-16 | | -16=x/8 | | 4x+4x-200=10+90-2x | | 2c=3.25(c-25) | | 60=3/4k | | 24.344/c+32=10 |

Equations solver categories