(1/2)x+2=1/4+6

Simple and best practice solution for (1/2)x+2=1/4+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)x+2=1/4+6 equation:



(1/2)x+2=1/4+6
We move all terms to the left:
(1/2)x+2-(1/4+6)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)x+2-(1/4+6)=0
We multiply parentheses
x^2+2-(1/4+6)=0
We get rid of parentheses
x^2+2-6-1/4=0
We multiply all the terms by the denominator
x^2*4-1+2*4-6*4=0
We add all the numbers together, and all the variables
x^2*4-17=0
Wy multiply elements
4x^2-17=0
a = 4; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·4·(-17)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{17}}{2*4}=\frac{0-4\sqrt{17}}{8} =-\frac{4\sqrt{17}}{8} =-\frac{\sqrt{17}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{17}}{2*4}=\frac{0+4\sqrt{17}}{8} =\frac{4\sqrt{17}}{8} =\frac{\sqrt{17}}{2} $

See similar equations:

| 5h/2+15=25 | | 5(x^2+15x=) | | 1/2x+2=1/4+6 | | 4x-x=18+3 | | 9v+3+60=180 | | 4x-x=• | | C+6=18-2(c) | | (x-3)+7=(3x-9 | | -18+u=-7 | | -18+u=-11 | | (√2-y)=(y-√2) | | x-7=3x12 | | (5x+16)92+100+102=180 | | (3x-6)=(3x+75) | | 89+57(5x+16)=180 | | 2/7y=9/28 | | (3+x)^2=3 | | (2y+56)-6=45 | | 10n+4=84,n= | | (x+7)=(x-3) | | –3z+–12=3 | | 0.5^x=0.3535 | | (x-7)=(2x-1) | | x*0.06+x=1700 | | x2+14=50 | | 3/5=n35 | | 20x(2x-12)/20x=-4(8x+1)/20x | | 5x+2–4x=7-3 | | 15x−500=1000 | | “4(3x+2)=68″ | | 40=c/0.3 | | -10n5/5n=-8n12 |

Equations solver categories