(1/2)x-(4)=16

Simple and best practice solution for (1/2)x-(4)=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)x-(4)=16 equation:



(1/2)x-(4)=16
We move all terms to the left:
(1/2)x-(4)-(16)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)x-4-16=0
We add all the numbers together, and all the variables
(+1/2)x-20=0
We multiply parentheses
x^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $

See similar equations:

| -4-4m=-3m | | k+2k-3k+5k=15 | | 30x+40=180 | | H=-t²+3t+10 | | 30x+40=108 | | x+28=37. | | 5(-2x-4)+12x=-9-(x+15) | | -8a=-18 | | -2y+1=15 | | 9y+63=9y-30 | | 10x-2x+60=10x+34 | | 3+y/7=-5 | | 9x+7-2(-5x-3)=5(x-1) | | 31=-1-6p+4(p+6) | | 1/4x-1/2+4=12 | | 2w-2w+w=8 | | x+3-2√x+11=0 | | 9(x-4)-2x=5(x-2 | | 3(x+4)-10=12 | | 60=(3x-12) | | 21y+25=-35 | | -9(1-5c)=-(-9c+9 | | 2x-4+6=-20 | | (2x+3)-x=19 | | 0.89+10d=0.99+10d | | 1/5(25-5x)=21-3(x-4) | | t+3/2=t+3 | | 2(7x-24)=4x+30 | | 7x+(x-20)=180 | | R=3+10x | | -4(x+57=-35 | | 2(7x-24)=2x+15 |

Equations solver categories