(1/2)x-3=x+1/4

Simple and best practice solution for (1/2)x-3=x+1/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)x-3=x+1/4 equation:



(1/2)x-3=x+1/4
We move all terms to the left:
(1/2)x-3-(x+1/4)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)x-(+x+1/4)-3=0
We multiply parentheses
x^2-(+x+1/4)-3=0
We get rid of parentheses
x^2-x-3-1/4=0
We multiply all the terms by the denominator
x^2*4-x*4-1-3*4=0
We add all the numbers together, and all the variables
x^2*4-x*4-13=0
Wy multiply elements
4x^2-4x-13=0
a = 4; b = -4; c = -13;
Δ = b2-4ac
Δ = -42-4·4·(-13)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{14}}{2*4}=\frac{4-4\sqrt{14}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{14}}{2*4}=\frac{4+4\sqrt{14}}{8} $

See similar equations:

| (10x+24)-6(6x+72)-6=180 | | 2x+5=41−4x | | 8(w+9)=80 | | 5k-7=4K-5 | | 7+-9x=52 | | (x+3)/2=7/4 | | 7(8+w)=70 | | 3/3x+9=2/2x+6 | | 7a×3a=32 | | 4x+4=6x+1 | | 11x²+7x-4=0 | | x-5(2x-4)=3x+8 | | x+5(x-1)=4 | | 2(1-x)+30=15 | | 8(4x+3)=+9 | | -9n+5=86 | | 5x+7+2x-8=48 | | 1/8y+6=-19 | | (2x)-12=54 | | 14x+7x=21x | | 14x+7x=21xx= | | -6x+2=9 | | 3*x*(5-4)=5 | | 15x^-7x-4=0 | | 5x-9=8+3 | | (1/6)/(1.5)=(35/x) | | 7+9x=15+18x | | 227/8+2a=-3/2a+1/4(-23/8a+1) | | x+x+2=x+4+31 | | 3(a+2)+2(a-5)=10 | | -100=2(-2-6x) | | 27=3c-(6-2c |

Equations solver categories