(1/2*x)+(x)+(x-5)=100

Simple and best practice solution for (1/2*x)+(x)+(x-5)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2*x)+(x)+(x-5)=100 equation:



(1/2x)+(x)+(x-5)=100
We move all terms to the left:
(1/2x)+(x)+(x-5)-(100)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)+x+(x-5)-100=0
We add all the numbers together, and all the variables
x+(+1/2x)+(x-5)-100=0
We get rid of parentheses
x+1/2x+x-5-100=0
We multiply all the terms by the denominator
x*2x+x*2x-5*2x-100*2x+1=0
Wy multiply elements
2x^2+2x^2-10x-200x+1=0
We add all the numbers together, and all the variables
4x^2-210x+1=0
a = 4; b = -210; c = +1;
Δ = b2-4ac
Δ = -2102-4·4·1
Δ = 44084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44084}=\sqrt{4*11021}=\sqrt{4}*\sqrt{11021}=2\sqrt{11021}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-210)-2\sqrt{11021}}{2*4}=\frac{210-2\sqrt{11021}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-210)+2\sqrt{11021}}{2*4}=\frac{210+2\sqrt{11021}}{8} $

See similar equations:

| (1/2*x)+(x)+(x+5)=100 | | 1/2x+x+x+3=100 | | (1/2*x)+(x)+(x+3)=100 | | t^2-34t+120=0 | | 6-20=5x | | (1/2x)+x+(x+3)=100 | | 12/(12-8)=a | | 7(b-3)=7b-21 | | t=-16T^2+6T+4 | | 8-2^4x=2 | | 0.4x+5=7-0.6x | | -x=-15-37 | | -4x=2x-672 | | 5(3x-3)+9=39 | | -4x=2×-672 | | x+(x*0.1)=10400 | | 2x=5x+369 | | -3x+11x=-560 | | -2x-5x=357 | | 5y=9=13 | | 4x+4x=648 | | -9x=729-369 | | 8x-13x=98-133 | | 4x=-90+54 | | 3x+5x=192 | | -4x=-372 | | 8x=-432 | | 30x+20=22x+44 | | 4-3x=147 | | 5x=524 | | 5(x-5)=x+19 | | 4x-20=3(5x-3) |

Equations solver categories