If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2x)+(2x-9)+(2x)=180
We move all terms to the left:
(1/2x)+(2x-9)+(2x)-(180)=0
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/2x)+(2x-9)+2x-180=0
We add all the numbers together, and all the variables
2x+(+1/2x)+(2x-9)-180=0
We get rid of parentheses
2x+1/2x+2x-9-180=0
We multiply all the terms by the denominator
2x*2x+2x*2x-9*2x-180*2x+1=0
Wy multiply elements
4x^2+4x^2-18x-360x+1=0
We add all the numbers together, and all the variables
8x^2-378x+1=0
a = 8; b = -378; c = +1;
Δ = b2-4ac
Δ = -3782-4·8·1
Δ = 142852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{142852}=\sqrt{4*35713}=\sqrt{4}*\sqrt{35713}=2\sqrt{35713}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-378)-2\sqrt{35713}}{2*8}=\frac{378-2\sqrt{35713}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-378)+2\sqrt{35713}}{2*8}=\frac{378+2\sqrt{35713}}{16} $
| x-(.35x)=500 | | 4/3b-1=25 | | Y=2x-3x-20 | | 6x-4=4-3x | | 4x/40=31/40 | | 4=6−2h | | 5a-8=8 | | 7(x=5)=49 | | 15+7x+6=63 | | -3.2+0.7p=p+5.1 | | Y=-5+0.8x | | 6x+5=-2 | | 9(x-8)=−108 | | 13-(2c+2)-2=2(c+2)+3c | | x+2(x-5)=15 | | 7(x-5)(x+8)=0 | | 8-2(x+5)=3x-(5-5x) | | 7/x-8=2 | | 5/6=1/r | | -9/12x=1/12 | | -4/7+x=3/21 | | 2/5=a/40 | | 5/4x=6/3x=1/12 | | 15/12x-24/12x=1/12 | | (2x+2)-6=10-3(x-1) | | 7/5=4x/138 | | (x=4)^9=11 | | H(t)=-16t+4624 | | 3n−7=3n−6 | | (3x)+(2x+17)+(x-5)=180 | | 19/8+y=23/4 | | 4(c+3)=c |