(1/2x)+(x+30)=90

Simple and best practice solution for (1/2x)+(x+30)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x)+(x+30)=90 equation:



(1/2x)+(x+30)=90
We move all terms to the left:
(1/2x)+(x+30)-(90)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)+(x+30)-90=0
We get rid of parentheses
1/2x+x+30-90=0
We multiply all the terms by the denominator
x*2x+30*2x-90*2x+1=0
Wy multiply elements
2x^2+60x-180x+1=0
We add all the numbers together, and all the variables
2x^2-120x+1=0
a = 2; b = -120; c = +1;
Δ = b2-4ac
Δ = -1202-4·2·1
Δ = 14392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14392}=\sqrt{4*3598}=\sqrt{4}*\sqrt{3598}=2\sqrt{3598}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-2\sqrt{3598}}{2*2}=\frac{120-2\sqrt{3598}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+2\sqrt{3598}}{2*2}=\frac{120+2\sqrt{3598}}{4} $

See similar equations:

| m+(-6)=15 | | a-6.75=2.12 | | 6x+15=4x+32 | | 0.25x+2(2x-6)=7 | | −17+5c=5(c−5)+8 | | B=7/4(j-42) | | 8k+6K=3 | | -0.1x+0.4=-0.8x | | 5b+5=18 | | 12+2n=16 | | -3(2x+7)+3=-3(6+2x) | | 10b+14=4 | | 5x-1+29+7=90 | | -7=15-y | | 2/3x5/5x=26 | | -5=x/4-6 | | 2x+3-4x-1=10 | | 3x+44=-19 | | 6x+42=-6(x+7) | | -7+2m=1+3m | | 4/5+2/3n=24 | | r+74=-r-74 | | 4/5n+2/3n=24 | | 553=256+48n | | c=3.14(120) | | -(n+-3)+2=10 | | 3n-5=11+5n | | 2(g-13)+4=16 | | t+4.6=-7.5 | | 2r+5=-10 | | 211x=79 | | 15*n*n-54=0 |

Equations solver categories