If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2x)+(x-25)+(1/2x)+(x-15)+100=540
We move all terms to the left:
(1/2x)+(x-25)+(1/2x)+(x-15)+100-(540)=0
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/2x)+(x-25)+(+1/2x)+(x-15)+100-540=0
We add all the numbers together, and all the variables
(+1/2x)+(x-25)+(+1/2x)+(x-15)-440=0
We get rid of parentheses
1/2x+x+1/2x+x-25-15-440=0
We multiply all the terms by the denominator
x*2x+x*2x-25*2x-15*2x-440*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x-25*2x-15*2x-440*2x+2=0
Wy multiply elements
2x^2+2x^2-50x-30x-880x+2=0
We add all the numbers together, and all the variables
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $
| 6-4x=x-11 | | (3^3-3*9)+(7-2^2)b=24b | | 5(-1/5)-3y=-15 | | ?/3x24=16 | | 0.8x-6.2=0.2 | | -5(3m=6)=-3(4m-2) | | c2-20c-276=0 | | (0.5-0.75)^2x-6.9=9.9 | | 18+6/7k=-23 | | (1/3x)+(x-10)+(x-20)+40=360 | | -16x+13=20x-23 | | -8(-3p-5)+6(p+4)=34 | | -16x+13+20x-23=180 | | 6/7k=-41 | | C^2-20c-276=0 | | 9x-(3x-9)=1+5x | | 5(2x-4)+7x=0 | | 4-3y=(y+4) | | -16x+3-20x+23=180 | | 45+x=3.5x | | 3a=2a+7=12 | | 2x⁴-x²-15=0 | | 12x-(6x-12)=4+5x | | 0.5r=2(0.75r-1)=0.25r=6 | | 3(v=6)=42 | | 3w+2=36 | | 2/3*z=8 | | w2-7w=18 | | 3/7w+2/9=4/9w+1/7 | | 2+a/3+5=6 | | 8d-42=1/3(6-9) | | 4(8-(-2x-5))=48x+152 |