(1/2x)+17=4x+2

Simple and best practice solution for (1/2x)+17=4x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x)+17=4x+2 equation:



(1/2x)+17=4x+2
We move all terms to the left:
(1/2x)+17-(4x+2)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)-(4x+2)+17=0
We get rid of parentheses
1/2x-4x-2+17=0
We multiply all the terms by the denominator
-4x*2x-2*2x+17*2x+1=0
Wy multiply elements
-8x^2-4x+34x+1=0
We add all the numbers together, and all the variables
-8x^2+30x+1=0
a = -8; b = 30; c = +1;
Δ = b2-4ac
Δ = 302-4·(-8)·1
Δ = 932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{932}=\sqrt{4*233}=\sqrt{4}*\sqrt{233}=2\sqrt{233}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{233}}{2*-8}=\frac{-30-2\sqrt{233}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{233}}{2*-8}=\frac{-30+2\sqrt{233}}{-16} $

See similar equations:

| 5+y=3y-6y+21 | | -2(1+2r)=-(4r-8) | | x/(7/2)=-7 | | (1/2x+17)=4x+2 | | -7=-4(p+8)+3(-p-8) | | -3n-11=8(n-1) | | -×-5y=-23 | | x-5=2(x+3)-x | | -7=-4(p+8)+3(-p-8) | | (4-y)3=-9 | | 3/5y-1/6=-2/5y-1/3 | | 1/2(2n+6=5n-12-n | | −19x+-38=−19x+-38 | | 1/4-9x=6 | | 5x+17=4x+12 | | 8r+3-1+7r=6 | | 192+x=458 | | 80m=40 | | -7/d=6 | | -2x+-3x=3x+4 | | n/3+10=12 | | 6(5v-2)=-12-3v | | -5h-17=-8(h+4) | | -7=-4(p+8)+3(-p-8 | | 1/2x+17=4x+2 | | y=12*9+5 | | −68x+68=-68x+34 | | -5h-17=-8(h=4) | | 2/x+5=x+8/9 | | 4(5x-10)+2(2x+10)=124 | | -7(6x+4)+3(4-x)=-61 | | X+1/12=5/6+x-2/3 |

Equations solver categories