(1/2x)+x+60=180

Simple and best practice solution for (1/2x)+x+60=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x)+x+60=180 equation:



(1/2x)+x+60=180
We move all terms to the left:
(1/2x)+x+60-(180)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)+x+60-180=0
We add all the numbers together, and all the variables
x+(+1/2x)-120=0
We get rid of parentheses
x+1/2x-120=0
We multiply all the terms by the denominator
x*2x-120*2x+1=0
Wy multiply elements
2x^2-240x+1=0
a = 2; b = -240; c = +1;
Δ = b2-4ac
Δ = -2402-4·2·1
Δ = 57592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{57592}=\sqrt{4*14398}=\sqrt{4}*\sqrt{14398}=2\sqrt{14398}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-2\sqrt{14398}}{2*2}=\frac{240-2\sqrt{14398}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+2\sqrt{14398}}{2*2}=\frac{240+2\sqrt{14398}}{4} $

See similar equations:

| 1.7x+8.4x=7.2+7.8x | | 2^2t-12(2^t)+32=0 | | (x+17)+(4x-5)=117 | | -4x-151=3x+87 | | -2(3x-5)=4(3x+2)-8x | | 6x2−17x+14=0 | | Y-5=-4(x+3) | | 3(2x-7)=(-33) | | -60+8x=14x+102 | | 9−−18÷−2=x | | 3(y+1)=7.5 | | 3(p+7)=9 | | Y=-0.02d²+2.6d-66.5 | | 2^t-12(12t)+32=0 | | v^2=10 | | 15y=60-18× | | (3x)+21=3(x+7) | | 5(4^x)=30 | | 3-4y=5y-15 | | 9*5^(2x+1)=27 | | 64*(0.9)^x=0 | | 0.9^x=64 | | 7x+8=2x+17 | | 3(1.5x+9)=-31.5 | | 7+-x=-10 | | 3x+14=9x-3 | | 24/33=32/f | | -0.9p+3.2=-1.17p | | -2x+17=45 | | -2x-17=45 | | 3f-2=5f+13 | | 38-3x=14 |

Equations solver categories