(1/2x)-(1/6x)=2

Simple and best practice solution for (1/2x)-(1/6x)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x)-(1/6x)=2 equation:



(1/2x)-(1/6x)=2
We move all terms to the left:
(1/2x)-(1/6x)-(2)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)-(+1/6x)-2=0
We get rid of parentheses
1/2x-1/6x-2=0
We calculate fractions
6x/12x^2+(-2x)/12x^2-2=0
We multiply all the terms by the denominator
6x+(-2x)-2*12x^2=0
Wy multiply elements
-24x^2+6x+(-2x)=0
We get rid of parentheses
-24x^2+6x-2x=0
We add all the numbers together, and all the variables
-24x^2+4x=0
a = -24; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-24)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-24}=\frac{-8}{-48} =1/6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-24}=\frac{0}{-48} =0 $

See similar equations:

| 3=6.4x+35 | | 14−3g=5 | | 5x+8=-4x+8 | | (4/y-1)-(1/2)=(3/y+1) | | 13x-3=9x+29 | | x÷6.5=2.3 | | 90=5(5x+3) | | p/4+11=15 | | 7x+5+-3+x=5 | | -9=7b=8b-7 | | p/4+ 11= 15 | | x(1+0.066)=23078.90 | | 2x+√3=12 | | 2x-4=x=1 | | (X-30)+(1/2x+15)+(2x-120)=180 | | 5^{2x}+1=4^{5x} | | 11+5m=98.6 | | X+x2=122-x3 | | 7+2t-2=7t+9-4t | | 25=5(4x-3) | | 6x7=6x(5+ | | 3(4x-4)=36 | | 4x+10=-2x=70 | | 2x+5=10+10x | | (12/(x+5))-(24/(x^2-25))=4 | | -2(x=4)-3x+8) | | 4c+8=7,2+5c | | -30=12=7x | | -7v+7-v=14-8v | | -2+13=17x-5-16x | | -9y-8=2y+25 | | 3^(2x/1)=2^(x-4) |

Equations solver categories