(1/2x+12)+(7x+5)=180

Simple and best practice solution for (1/2x+12)+(7x+5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x+12)+(7x+5)=180 equation:



(1/2x+12)+(7x+5)=180
We move all terms to the left:
(1/2x+12)+(7x+5)-(180)=0
Domain of the equation: 2x+12)!=0
x∈R
We get rid of parentheses
1/2x+7x+12+5-180=0
We multiply all the terms by the denominator
7x*2x+12*2x+5*2x-180*2x+1=0
Wy multiply elements
14x^2+24x+10x-360x+1=0
We add all the numbers together, and all the variables
14x^2-326x+1=0
a = 14; b = -326; c = +1;
Δ = b2-4ac
Δ = -3262-4·14·1
Δ = 106220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{106220}=\sqrt{4*26555}=\sqrt{4}*\sqrt{26555}=2\sqrt{26555}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-326)-2\sqrt{26555}}{2*14}=\frac{326-2\sqrt{26555}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-326)+2\sqrt{26555}}{2*14}=\frac{326+2\sqrt{26555}}{28} $

See similar equations:

| 23n=92 | | 5z-3z-5=-15 | | 23+0.25=c | | -2x+-6=-4x+-4-2 | | 2000x+6000=3500x-39 | | -m-7/4=17/8 | | 3.5d+9.25=5.25d | | 12a-10a=5a | | -26=-8u+3(u-2) | | 15=x+5.5 | | 2000x+6000=3500x-390 | | -25x+15=-15+45 | | q/4+7=11 | | 63+4v=13v | | 5-8n=107 | | 9|3y+8|=18 | | T=6s+3.99 | | 5x+4(5+5x)=10x+15 | | -15+5s=9+7s | | 5y+2y+7=4y+19 | | -12-84=1/4(16-x) | | -7+9x,x=3 | | 8-14x=36 | | 12=x/3+15 | | 3f+8=7-3f | | -20=-4x-8+5x | | 8b-9=8b-1 | | 1+2n=23 | | 2x-8=4x+3x+1 | | 2/10=p/35 | | 10(14x)-22=180 | | -14=-5+.3x |

Equations solver categories