(1/2x+15)+(2x-50)+(2x-50)=180

Simple and best practice solution for (1/2x+15)+(2x-50)+(2x-50)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x+15)+(2x-50)+(2x-50)=180 equation:



(1/2x+15)+(2x-50)+(2x-50)=180
We move all terms to the left:
(1/2x+15)+(2x-50)+(2x-50)-(180)=0
Domain of the equation: 2x+15)!=0
x∈R
We get rid of parentheses
1/2x+2x+2x+15-50-50-180=0
We multiply all the terms by the denominator
2x*2x+2x*2x+15*2x-50*2x-50*2x-180*2x+1=0
Wy multiply elements
4x^2+4x^2+30x-100x-100x-360x+1=0
We add all the numbers together, and all the variables
8x^2-530x+1=0
a = 8; b = -530; c = +1;
Δ = b2-4ac
Δ = -5302-4·8·1
Δ = 280868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{280868}=\sqrt{196*1433}=\sqrt{196}*\sqrt{1433}=14\sqrt{1433}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-530)-14\sqrt{1433}}{2*8}=\frac{530-14\sqrt{1433}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-530)+14\sqrt{1433}}{2*8}=\frac{530+14\sqrt{1433}}{16} $

See similar equations:

| 2x+4(3/2)=12 | | 3x-8=3x+9 | | x-9=16 | | 5/8=u+2/12 | | 5(2c+7)−3c=7(c+5) | | x+15=8 | | (2x-20)=(x-15) | | 4x+8+6x−5=33 | | 3(1-8x)-6=93 | | 2x-20=x-15 | | 3=t+11.5−t | | 18x=10x+2 | | 30x+12x=5x-19 | | 8(8m-2)-8m=0 | | -3(1-8n)=123 | | 1.4x=8+x | | 12/11=p/12p= | | (H+4)=6h+4 | | 7r-3=3r+4r-3 | | 8n-(5n+)=14 | | R=7/3p+40 | | 39=-2x-13 | | y/5+y/2=4/5 | | 39=-2x-14 | | -5(6-3x)=4(6+6x) | | 13=5m-2* | | -5=14-x | | -5(5x+3)-5x+1=−44 | | 4x2–48x=0 | | 1/3v=25 | | 39=u | | -(4+2w)=6w |

Equations solver categories