(1/2x+15)+x=90

Simple and best practice solution for (1/2x+15)+x=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x+15)+x=90 equation:



(1/2x+15)+x=90
We move all terms to the left:
(1/2x+15)+x-(90)=0
Domain of the equation: 2x+15)!=0
x∈R
We add all the numbers together, and all the variables
x+(1/2x+15)-90=0
We get rid of parentheses
x+1/2x+15-90=0
We multiply all the terms by the denominator
x*2x+15*2x-90*2x+1=0
Wy multiply elements
2x^2+30x-180x+1=0
We add all the numbers together, and all the variables
2x^2-150x+1=0
a = 2; b = -150; c = +1;
Δ = b2-4ac
Δ = -1502-4·2·1
Δ = 22492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22492}=\sqrt{4*5623}=\sqrt{4}*\sqrt{5623}=2\sqrt{5623}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5623}}{2*2}=\frac{150-2\sqrt{5623}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5623}}{2*2}=\frac{150+2\sqrt{5623}}{4} $

See similar equations:

| 11n-n+5n-15n+1=11 | | 25x+3+34x-4=38 | | R=9y+2 | | 41=12y-7 | | 16x+12+6x-8=180 | | -12^f=3 | | 5(x+6)-5=10 | | 1/2+1/2(x-1)=1/4 | | -³/²x-37=2 | | 2x+1+13x-5=146 | | 42x+7+28x+1=62 | | 9x+9=5x-3 | | 28x+1+42x+7=62 | | 2x2=5x+12 | | 7t−9=47 | | 4–3(x+6)=28 | | 58x=783 | | 72=2(p−39) | | 11+7x+9+2x=110 | | 12/7+1/8t=2 | | 4r^2-3r+8=3 | | 4q+29q+-29q+-26q=-44 | | 6x3-24x2=0 | | 8–2x+2=6 | | -1=p+9^4 | | 84+2x+x+28=44 | | -2(b+4)=2(-3+8b)-2 | | (r-7)^2=5 | | 15=3(q+3) | | x+64+99+x=155 | | 12(1.5)+40x=783 | | (1/3x+1)+7=11 |

Equations solver categories