If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2x+16)+(4x-293)+(x-27)=180
We move all terms to the left:
(1/2x+16)+(4x-293)+(x-27)-(180)=0
Domain of the equation: 2x+16)!=0We get rid of parentheses
x∈R
1/2x+4x+x+16-293-27-180=0
We multiply all the terms by the denominator
4x*2x+x*2x+16*2x-293*2x-27*2x-180*2x+1=0
Wy multiply elements
8x^2+2x^2+32x-586x-54x-360x+1=0
We add all the numbers together, and all the variables
10x^2-968x+1=0
a = 10; b = -968; c = +1;
Δ = b2-4ac
Δ = -9682-4·10·1
Δ = 936984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{936984}=\sqrt{4*234246}=\sqrt{4}*\sqrt{234246}=2\sqrt{234246}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-968)-2\sqrt{234246}}{2*10}=\frac{968-2\sqrt{234246}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-968)+2\sqrt{234246}}{2*10}=\frac{968+2\sqrt{234246}}{20} $
| z-52=9 | | 3j=24+j | | 6x^2-6x-98=0 | | b-60=36 | | 4/3x-2=x+1/2 | | X2+12x+7=0 | | -3x-2(-3x-8)=37 | | 20x+(-17)=-1 | | x-83=4 | | 29^x=81 | | x^2+(3x)^2=40^2 | | (4+v)(5v+8)=0 | | X-5+1.5=9x | | (2x-3)(3x-4)=6x^2 | | x-51=67 | | -27=4v+7(v-7) | | -21+70n=7 | | Y=x+4;(1,3) | | 12+4a-3a-12+5a=-16-2a-7-9+2a | | 1/2x+16=x | | (X+9)/8=(3/4)+(x-8)/3 | | 4(k-4)=8(k-1) | | 9x+22=60 | | 47x^2+30x=0 | | (300-x)x1/10=1890 | | 3/4n+9/10=-1/5n-23/10 | | 3.4x(-8)=32.8 | | -16x^2+272=0 | | 89=1+8x | | Q+q+q=6 | | 4x+5x=35 | | U-3+5x=42 |