(1/2x+20)+(2x-10)=180

Simple and best practice solution for (1/2x+20)+(2x-10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x+20)+(2x-10)=180 equation:



(1/2x+20)+(2x-10)=180
We move all terms to the left:
(1/2x+20)+(2x-10)-(180)=0
Domain of the equation: 2x+20)!=0
x∈R
We get rid of parentheses
1/2x+2x+20-10-180=0
We multiply all the terms by the denominator
2x*2x+20*2x-10*2x-180*2x+1=0
Wy multiply elements
4x^2+40x-20x-360x+1=0
We add all the numbers together, and all the variables
4x^2-340x+1=0
a = 4; b = -340; c = +1;
Δ = b2-4ac
Δ = -3402-4·4·1
Δ = 115584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{115584}=\sqrt{64*1806}=\sqrt{64}*\sqrt{1806}=8\sqrt{1806}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-340)-8\sqrt{1806}}{2*4}=\frac{340-8\sqrt{1806}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-340)+8\sqrt{1806}}{2*4}=\frac{340+8\sqrt{1806}}{8} $

See similar equations:

| 15v-8v=63 | | 9000=LxL-45 | | y=4^8 | | -24=4w+4 | | y=y*3 | | y=76(1.013)^6 | | P(x=2)=2^C2^((0.15)^2)(0.85)^(2-2) | | 3x5÷7=2 | | 2x^2-7=-27 | | (22.75-5.25)/7=x | | 16x=21(8) | | y=76(1.013 | | 7y+42=3y-28 | | -2-6(3+7v)=106 | | y(444444)=-3000 | | 5.25+3=x | | -84=4(3-8x) | | y=-3(-14)-4 | | 7x+10=7x-17 | | -145=5(3x-5) | | 5x-2+2x+6+x=180 | | 46.5=3(4+5s | | 5x-8+3x=0 | | 5(500)+13y=3034 | | 5(500-13y)=3034 | | 12x+41=65 | | 1-v-4=-3 | | 0=6x-7x | | 5(500-13y=3034 | | 8–5x=-3(2x+4) | | 45+5x=15 | | 25+r=(-5(2+8r)+6r |

Equations solver categories