If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)(24p-66)=3p+43
We move all terms to the left:
(1/3)(24p-66)-(3p+43)=0
Domain of the equation: 3)(24p-66)!=0We add all the numbers together, and all the variables
p∈R
(+1/3)(24p-66)-(3p+43)=0
We get rid of parentheses
(+1/3)(24p-66)-3p-43=0
We multiply parentheses ..
(+24p^2+1/3*-66)-3p-43=0
We multiply all the terms by the denominator
(+24p^2+1-3p*3*-66)-43*3*-66)=0
We add all the numbers together, and all the variables
(+24p^2+1-3p*3*-66)=0
We get rid of parentheses
24p^2-3p*3*+1-66=0
We add all the numbers together, and all the variables
24p^2-3p*3*-65=0
Wy multiply elements
24p^2-9p^2-65=0
We add all the numbers together, and all the variables
15p^2-65=0
a = 15; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·15·(-65)
Δ = 3900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3900}=\sqrt{100*39}=\sqrt{100}*\sqrt{39}=10\sqrt{39}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{39}}{2*15}=\frac{0-10\sqrt{39}}{30} =-\frac{10\sqrt{39}}{30} =-\frac{\sqrt{39}}{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{39}}{2*15}=\frac{0+10\sqrt{39}}{30} =\frac{10\sqrt{39}}{30} =\frac{\sqrt{39}}{3} $
| x/2+x/5=2.1 | | |3x-21|=0 | | 1-8x=5(-x-5)+5 | | 24+6x=-6+6(x+6) | | -5(3x-17)=2(x-15)-55 | | 1x-13=7x-19 | | n3−5=12 | | -10-2y=30 | | 2n+20=5(6n+4) | | 18+4x=5(-x+2)-37 | | 2n+20=(6n+4) | | 4(c+6)-2c=-1 | | 6x+29=203 | | 4x+29=148 | | -21m+6=-3(7m-2) | | n÷9=13;n= | | 4x+29=119 | | 10+4q=40-2q | | (x)/(3)+7=49 | | 22/18=n/63 | | 24+6x=-6+6(x-6) | | 2x+22=77 | | (x-2)/(2)=2 | | 2x+22=88 | | -11/9+11/5p=1/3 | | r-17.1=-21.9 | | -3=(x-6)/(-2) | | -5-2(x-3)=21 | | 64=9x-8 | | 3n+24=12 | | X+1/2x=120 | | -2x-5=4-5(x+3) |