(1/3)(2x+3)=3

Simple and best practice solution for (1/3)(2x+3)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)(2x+3)=3 equation:



(1/3)(2x+3)=3
We move all terms to the left:
(1/3)(2x+3)-(3)=0
Domain of the equation: 3)(2x+3)!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)(2x+3)-3=0
We multiply parentheses ..
(+2x^2+1/3*3)-3=0
We multiply all the terms by the denominator
(+2x^2+1-3*3*3)=0
We get rid of parentheses
2x^2+1-3*3*3=0
We add all the numbers together, and all the variables
2x^2-26=0
a = 2; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·2·(-26)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{13}}{2*2}=\frac{0-4\sqrt{13}}{4} =-\frac{4\sqrt{13}}{4} =-\sqrt{13} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{13}}{2*2}=\frac{0+4\sqrt{13}}{4} =\frac{4\sqrt{13}}{4} =\sqrt{13} $

See similar equations:

| –4+2h=3h | | 2/3(3a+6)=5a+3-a-23 | | t=-2.4t+75 | | -72c-1=11 | | 14+5x-20=4(2x-1) | | 16+6.50p=10+7.50p | | +11+6k=65 | | 6y–1=27–y | | -4=-m+8-2m | | a-21=70 | | -4(3+2n)+6n=4 | | 5n-3n=-2n+16 | | 8t-1=31 | | g+6=–6+4g | | (k-8)^2=0 | | 9=15+2w | | 4(7-y)+12=-24 | | 5-7c=232 | | 4=3y+19 | | 78.50+x=83.75 | | 2x5=19 | | 14x+9x-10-10x+5=180 | | -4(-m-3)+8=28 | | 72=6(n-74) | | 4y/3+2=-5/2 | | 55=16x+7 | | -x/3=33 | | 11x=14x-30 | | 22=5x-2 | | 10−f=9f | | 12=5n-8 | | 7t-9=7+11t |

Equations solver categories