If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)(6x+12)-2(x-7)=19
We move all terms to the left:
(1/3)(6x+12)-2(x-7)-(19)=0
Domain of the equation: 3)(6x+12)!=0We add all the numbers together, and all the variables
x∈R
(+1/3)(6x+12)-2(x-7)-19=0
We multiply parentheses
(+1/3)(6x+12)-2x+14-19=0
We multiply parentheses ..
(+6x^2+1/3*12)-2x+14-19=0
We multiply all the terms by the denominator
(+6x^2+1-2x*3*12)+14*3*12)-19*3*12)=0
We add all the numbers together, and all the variables
(+6x^2+1-2x*3*12)=0
We get rid of parentheses
6x^2-2x*3*12+1=0
Wy multiply elements
6x^2-72x*1+1=0
Wy multiply elements
6x^2-72x+1=0
a = 6; b = -72; c = +1;
Δ = b2-4ac
Δ = -722-4·6·1
Δ = 5160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5160}=\sqrt{4*1290}=\sqrt{4}*\sqrt{1290}=2\sqrt{1290}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-2\sqrt{1290}}{2*6}=\frac{72-2\sqrt{1290}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+2\sqrt{1290}}{2*6}=\frac{72+2\sqrt{1290}}{12} $
| 6x-13=120 | | 6x-13=12” | | 2x-39=3=(1-4x) | | 3x+4(x+50)=1200 | | w-35=45 | | 9(z-4)=0 | | 2x+13x-10=90 | | v-15/2=20 | | 7=-7x+8 | | 8x-27-10-6x=19 | | P=10-0,2q | | 27+3x=5x-3 | | 8x-204=180 | | 124+(2z+16)=180 | | 4(x+3)-15=2(x+7)-15 | | p2− 1=2 | | 277=158-y | | 8v-60=-60 | | 7n-8=4n+10 | | 0.625x-0.25x+0.5=0.3 | | 6(x-8)-6=-54 | | 0.6x+4=1.8 | | Vx5x= | | 52=11a-14 | | r/3+10=12 | | 5x-18-1x=-36 | | X^2+5x-194=0 | | .015x=38.64 | | 3^(2)-3x-6=0 | | 3x+6+2x=7x-4-2 | | 4y-y=11=38 | | 18m-10m+6=-42 |