If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)(6x+27)=12
We move all terms to the left:
(1/3)(6x+27)-(12)=0
Domain of the equation: 3)(6x+27)!=0We add all the numbers together, and all the variables
x∈R
(+1/3)(6x+27)-12=0
We multiply parentheses ..
(+6x^2+1/3*27)-12=0
We multiply all the terms by the denominator
(+6x^2+1-12*3*27)=0
We get rid of parentheses
6x^2+1-12*3*27=0
We add all the numbers together, and all the variables
6x^2-971=0
a = 6; b = 0; c = -971;
Δ = b2-4ac
Δ = 02-4·6·(-971)
Δ = 23304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23304}=\sqrt{4*5826}=\sqrt{4}*\sqrt{5826}=2\sqrt{5826}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5826}}{2*6}=\frac{0-2\sqrt{5826}}{12} =-\frac{2\sqrt{5826}}{12} =-\frac{\sqrt{5826}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5826}}{2*6}=\frac{0+2\sqrt{5826}}{12} =\frac{2\sqrt{5826}}{12} =\frac{\sqrt{5826}}{6} $
| 200m-125m+45675=42435-150m | | 32-2y=18 | | 7r+34=-2(1-6r)+r | | 11(1+7n)=-58+8n | | 3(4x+7)=-45+30 | | 2+3(1-5x)=-85 | | x/3-10=-22 | | 9x-3=5x+8 | | 3+6n=4n-n | | 3(4x+7)=-45 | | 3(1x+8)-4=41 | | 7r+34=-2 | | -4x10=-14 | | 0=50-16x^2 | | 2s-6=10 | | 10x-2=-101 | | h/3=27 | | 2(x+2)-4=23 | | 5x-12+4x-6=90 | | 1/3x+4=6-2/3x | | 11(7+11x)=-36+8x | | -273=-7(3+6p) | | 7(c+1)−4c=13(3c−2) | | 2(3x+7)=-7+3 | | –7(j−91)=–35 | | 2(u-1)=-3u+18 | | 12b+108=-36 | | 4x+7=1x+40 | | y=-5+80 | | 0=9.5+(-9.8)*t | | 38+7k=-5(4-8k)-4k | | 5(x+2)-2x=6x-(x+4) |