If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)(6x-12)+5x=17
We move all terms to the left:
(1/3)(6x-12)+5x-(17)=0
Domain of the equation: 3)(6x-12)!=0We add all the numbers together, and all the variables
x∈R
(+1/3)(6x-12)+5x-17=0
We add all the numbers together, and all the variables
5x+(+1/3)(6x-12)-17=0
We multiply parentheses ..
(+6x^2+1/3*-12)+5x-17=0
We multiply all the terms by the denominator
(+6x^2+1+5x*3*-12)-17*3*-12)=0
We add all the numbers together, and all the variables
(+6x^2+1+5x*3*-12)=0
We get rid of parentheses
6x^2+5x*3*+1-12=0
We add all the numbers together, and all the variables
6x^2+5x*3*-11=0
Wy multiply elements
6x^2+15x^2-11=0
We add all the numbers together, and all the variables
21x^2-11=0
a = 21; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·21·(-11)
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{231}}{2*21}=\frac{0-2\sqrt{231}}{42} =-\frac{2\sqrt{231}}{42} =-\frac{\sqrt{231}}{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{231}}{2*21}=\frac{0+2\sqrt{231}}{42} =\frac{2\sqrt{231}}{42} =\frac{\sqrt{231}}{21} $
| 1/3(6x-12)+5x=17 | | -6h=-5h-6 | | 2x=-3-20 | | 7=8x+9 | | 6x-2+3x-5=-34 | | (Y+1)=(y-5)(2) | | 3+2x+4=6(x-2)-1 | | 1/3(9x-15)+2x=15 | | 140+4(2x+10)=180 | | -2(3x+5)=-8-8x+6 | | 4(3x-3)=3x+24 | | 3x+1=-3x+13 | | (5-v)(5v+8)=0 | | 9x+20=8x-14 | | 10x-17=9x-20 | | 5x+6=10x+16 | | 1/3(x)=21 | | 21(1/3)=x | | 22=v=-65 | | 21x1/3=x | | 1.785x^2+9.668=0 | | f(-2)=-18^2+2-10 | | 30=3/5(x) | | 15x2-49x+26=0 | | 7y+4=2 | | 25=-8+9(x+3( | | x-4=x+84 | | X⁴+10x³=0 | | 2(4x+5)=3x | | 6^(3a-2)=6^(3a) | | -2x+2=-28 | | 7220=76x |