(1/3)(9k+12)=15

Simple and best practice solution for (1/3)(9k+12)=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)(9k+12)=15 equation:



(1/3)(9k+12)=15
We move all terms to the left:
(1/3)(9k+12)-(15)=0
Domain of the equation: 3)(9k+12)!=0
k∈R
We add all the numbers together, and all the variables
(+1/3)(9k+12)-15=0
We multiply parentheses ..
(+9k^2+1/3*12)-15=0
We multiply all the terms by the denominator
(+9k^2+1-15*3*12)=0
We get rid of parentheses
9k^2+1-15*3*12=0
We add all the numbers together, and all the variables
9k^2-539=0
a = 9; b = 0; c = -539;
Δ = b2-4ac
Δ = 02-4·9·(-539)
Δ = 19404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19404}=\sqrt{1764*11}=\sqrt{1764}*\sqrt{11}=42\sqrt{11}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{11}}{2*9}=\frac{0-42\sqrt{11}}{18} =-\frac{42\sqrt{11}}{18} =-\frac{7\sqrt{11}}{3} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{11}}{2*9}=\frac{0+42\sqrt{11}}{18} =\frac{42\sqrt{11}}{18} =\frac{7\sqrt{11}}{3} $

See similar equations:

| 10^x2-26x=-12 | | (-8)*x=-40 | | -2a-6=-10 | | 3x+20=5x+8 | | 0=-16t^2+1972 | | 10x^2+6x=8 | | 7-14m=2-5 | | (x+2)(x–3)–3=11 | | 2x+1=5x+5=180 | | -3(n-5)+5n=-5 | | 3y—20=7 | | 32*x+38=102 | | -8(m-3)=64 | | 4/b=3-2/b | | k/6+4=15 | | 6m−8=22 | | y-47=13 | | -2|3x+7|+8=10 | | 22=8x+10-4x | | 7x+40=3x+40 | | 1/512^2x=1/64^x^2 | | 5x-2+x=9+3x+101 | | -7(-3x-7)=43x+49 | | 180=2x+10+4x+20 | | 12x+5=8x-31 | | -66*x/6=-33 | | 8(m-8)=56 | | -4(-m-3)+8=-28 | | –2y–7=3 | | 175=28-w | | (5x)(3)=75.X= | | 5x^2+38=6x |

Equations solver categories