If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)(9p+36)=48
We move all terms to the left:
(1/3)(9p+36)-(48)=0
Domain of the equation: 3)(9p+36)!=0We add all the numbers together, and all the variables
p∈R
(+1/3)(9p+36)-48=0
We multiply parentheses ..
(+9p^2+1/3*36)-48=0
We multiply all the terms by the denominator
(+9p^2+1-48*3*36)=0
We get rid of parentheses
9p^2+1-48*3*36=0
We add all the numbers together, and all the variables
9p^2-5183=0
a = 9; b = 0; c = -5183;
Δ = b2-4ac
Δ = 02-4·9·(-5183)
Δ = 186588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{186588}=\sqrt{36*5183}=\sqrt{36}*\sqrt{5183}=6\sqrt{5183}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5183}}{2*9}=\frac{0-6\sqrt{5183}}{18} =-\frac{6\sqrt{5183}}{18} =-\frac{\sqrt{5183}}{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5183}}{2*9}=\frac{0+6\sqrt{5183}}{18} =\frac{6\sqrt{5183}}{18} =\frac{\sqrt{5183}}{3} $
| 144-x2=0 | | 1/8(8z+6)-(z-2)=0 | | -4x-5=2x+25 | | 45=−4c+.25 | | 15y+39=159 | | 7p^2=-196+77p | | 2+6(9c-2)=0 | | 6x+0.4=48.4 | | x+0.1x=2400 | | 93=-7d+9 | | -3x-13=2x-33 | | .25(20−4a)=6−a | | 2-8(-3r-1)=0 | | 3x+13=2(4x+4) | | 3=-(z-13)+-9 | | -9x+10=-3(2+5x) | | x-2-2=5+4x | | x=0.38*500 | | q=2.7=-0.9 | | -(k+10)=-5 | | -22p+11=4p-7 | | 0,5x^2-2,5x+2,28=0 | | 8.7+x/1.1=7 | | x2-4=2x-2 | | 7x=3x/2-12 | | x/4=7/4 | | (x+3)2=19 | | 5x+48+7x=12(x+4 | | 6=2x^2+9 | | 33.28=7g+3.53 | | -158=x+7(-5x-8) | | r+7=-9-3r |